Alessandra Zizzari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7013902/publications.pdf Version: 2024-02-01

ALESSANDDA 7177ADI

#	Article	IF	CITATIONS
1	Radiochemistry on chip: towards dose-on-demand synthesis of PET radiopharmaceuticals. Lab on A Chip, 2013, 13, 2328.	6.0	58
2	Ultrastrong Plasmon–Exciton Coupling by Dynamic Molecular Aggregation. ACS Photonics, 2018, 5, 143-150.	6.6	48
3	Catalytic Selfâ€Propulsion of Supramolecular Capsules Powered by Polyoxometalate Cargos. Chemistry - A European Journal, 2014, 20, 10910-10914.	3.3	45
4	Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach. Materials, 2017, 10, 1411.	2.9	42
5	Hydrophobin: fluorosurfactant-like properties without fluorine. Soft Matter, 2013, 9, 6505.	2.7	24
6	Fluoropolymers coatings on polydimethylsiloxane for retarding swelling in toluene. Thin Solid Films, 2012, 520, 2293-2300.	1.8	22
7	Radioactivity resistance evaluation of polymeric materials for application in radiopharmaceutical production at microscale. Microfluidics and Nanofluidics, 2011, 11, 35-44.	2.2	16
8	An SPR based immunoassay for the sensitive detection of the soluble epithelial marker E-cadherin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1963-1971.	3.3	15
9	Mixing enhancement induced by viscoelastic micromotors in microfluidic platforms. Chemical Engineering Journal, 2020, 391, 123572.	12.7	15
10	Analogy between periodic patterns in thin smectic liquid crystal films and the intermediate state of superconductors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17643-17649.	7.1	15
11	Catalytic oxygen production mediated by smart capsules to modulate elastic turbulence under a laminar flow regime. Lab on A Chip, 2014, 14, 4391-4397.	6.0	13
12	Fabrication of SU-8 microreactors for radiopharmaceutical production. Microelectronic Engineering, 2011, 88, 1664-1667.	2.4	12
13	Fast and safe microwave-assisted glass channel-shaped microstructure fabrication. Lab on A Chip, 2015, 15, 2395-2399.	6.0	12
14	One step preparation of quantum dot-embedded lipid nanovesicles by a microfluidic device. RSC Advances, 2015, 5, 98576-98582.	3.6	9
15	Integrated microfluidic viscometer for edible oil analysis. Sensors and Actuators B: Chemical, 2018, 265, 91-97.	7.8	9
16	Potential of CO2-laser processing of quartz for fast prototyping of microfluidic reactors and templates for 3D cell assembly over large scale. Materials Today Bio, 2021, 12, 100163.	5.5	9
17	Random Laser Spectral Fingerprinting of Lithographed Microstructures. Advanced Materials Technologies, 2021, 6, 2001037.	5.8	8
18	Highly Sensitive Membrane-Based Pressure Sensors (MePS) for Real-Time Monitoring of Catalytic Reactions. Analytical Chemistry, 2018, 90, 7659-7665.	6.5	7

#	Article	IF	CITATIONS
19	Continuous flow scalable production of injectable size-monodisperse nanoliposomes in easy-fabrication milli-fluidic reactors. Chemical Engineering Science, 2021, 235, 116481.	3.8	7
20	Sol–Gel Catalysts as an Efficient Tool for the Kumada-Corriu Reaction in Continuous Flow. Science of Advanced Materials, 2013, 5, 475-483.	0.7	7
21	Self-powered catalytic microfluidic platforms for fluid delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 257-262.	4.7	3
22	Environmentally Friendly Method of Assembly of Cardanol and Cholesterol into Nanostructures Using a Continuous Flow Microfluidic Device. ACS Sustainable Chemistry and Engineering, 2022, 10, 8484-8494.	6.7	3