
Guangbin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7013814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intermittent irrigation changes production, oxidation, and emission of CH4 in paddy fields determined with stable carbon isotope technique. Soil Biology and Biochemistry, 2012, 52, 108-116.	8.8	62
2	Effects of rice straw returning methods on N2O emission during wheat-growing season. Nutrient Cycling in Agroecosystems, 2010, 88, 463-469.	2.2	52
3	Effect of controlled-release fertilizer on mitigation of N2O emission from paddy field in South China: a multi-year field observation. Plant and Soil, 2013, 371, 473-486.	3.7	48
4	Effect of drainage in the fallow season on reduction of CH4 production and emission from permanently flooded rice fields. Nutrient Cycling in Agroecosystems, 2011, 89, 81-91.	2.2	42
5	Methane and nitrous oxide emissions from irrigated lowland rice paddies after wheat straw application and midseason aeration. Nutrient Cycling in Agroecosystems, 2014, 100, 65-76.	2.2	41
6	Effect of timing of joint application of hydroquinone and dicyandiamide on nitrous oxide emission from irrigated lowland rice paddy field. Chemosphere, 2009, 75, 1417-1422.	8.2	36
7	Drainage and tillage practices in the winter fallow season mitigate CH ₄ and N ₂ O emissions from a double-rice field in China. Atmospheric Chemistry and Physics, 2016, 16, 11853-11866.	4.9	34
8	Ecological rice-cropping systems mitigate global warming – A meta-analysis. Science of the Total Environment, 2021, 789, 147900.	8.0	34
9	Effect of rice straw application on stable carbon isotopes, methanogenic pathway, and fraction of CH4 oxidized in a continuously flooded rice field in winter season. Soil Biology and Biochemistry, 2015, 84, 75-82.	8.8	33
10	Timing of midseason aeration to reduce CH ₄ and N ₂ O emissions from double rice cultivation in China. Soil Science and Plant Nutrition, 2013, 59, 35-45.	1.9	31
11	Achieving low methane and nitrous oxide emissions with high economic incomes in a rice-based cropping system. Agricultural and Forest Meteorology, 2018, 259, 95-106.	4.8	30
12	Evaluation of methane and nitrous oxide emissions in a three-year case study on single rice and ratoon rice paddy fields. Journal of Cleaner Production, 2021, 297, 126650.	9.3	29
13	Pathway of CH ₄ production, fraction of CH ₄ oxidized, and ¹³ C isotope fractionation in a straw-incorporated rice field. Biogeosciences, 2013, 10, 3375-3389.	3.3	24
14	Winter tillage with the incorporation of stubble reduces the net global warming potential and greenhouse gas intensity of double-cropping rice fields. Soil and Tillage Research, 2018, 183, 19-27.	5.6	24
15	Combination of wet irrigation and nitrification inhibitor reduced nitrous oxide and methane emissions from a rice cropping system. Environmental Science and Pollution Research, 2016, 23, 17426-17436.	5.3	23
16	Reducing yield-scaled global warming potential and water use by rice plastic film mulching in a winter flooded paddy field. European Journal of Agronomy, 2020, 114, 126007.	4.1	22
17	Responses of greenhouse gas emissions and soil carbon and nitrogen sequestration to field management in the winter season: A 6-year measurement in a Chinese double-rice field. Agriculture, Ecosystems and Environment, 2021, 318, 107506.	5.3	22
18	Carbon isotope fractionation reveals distinct process of CH4 emission from different compartments of paddy ecosystem. Scientific Reports, 2016, 6, 27065.	3.3	17

GUANGBIN ZHANG

#	Article	IF	CITATIONS
19	Dynamic interactions of nitrogen fertilizer and straw application on greenhouse gas emissions and sequestration of soil carbon and nitrogen: A 13-year field study. Agriculture, Ecosystems and Environment, 2022, 325, 107753.	5.3	17
20	Elevated CO2 does not necessarily enhance greenhouse gas emissions from rice paddies. Science of the Total Environment, 2022, 810, 152363.	8.0	17
21	Methanogenic Pathway and Fraction of CH4 Oxidized in Paddy Fields: Seasonal Variation and Effect of Water Management in Winter Fallow Season. PLoS ONE, 2013, 8, e73982.	2.5	16
22	Anaerobic primed CO2 and CH4 in paddy soil are driven by Fe reduction and stimulated by biochar. Science of the Total Environment, 2022, 808, 151911.	8.0	15
23	Carbon isotopic composition, methanogenic pathway, and fraction of CH ₄ oxidized in a rice field flooded year-round. Journal of Geophysical Research, 2011, 116, .	3.3	14
24	Effects of Straw Incorporation Methods on Nitrous Oxide and Methane Emissions from a Wheat-Rice Rotation System. Pedosphere, 2019, 29, 204-215.	4.0	14
25	Variations of Stable Carbon Isotopes of CH4 Emission from Three Typical Rice Fields in China. Pedosphere, 2017, 27, 52-64.	4.0	13
26	Greenhouse gas emissions from ratoon rice fields among different varieties. Field Crops Research, 2022, 277, 108423.	5.1	11
27	Optimization of nitrogen fertilizer rate under integrated rice management in a hilly area of Southwest China. Pedosphere, 2020, 30, 759-768.	4.0	10
28	Methane and nitrous oxide emissions from a ratoon paddy field in Sichuan Province, China. European Journal of Soil Science, 2021, 72, 1478-1491.	3.9	10
29	Contribution of periphytic biofilm of paddy soils to carbon dioxide fixation and methane emissions. Innovation(China), 2022, 3, 100192.	9.1	10
30	Heavy metal pollution and net greenhouse gas emissions in a rice-wheat rotation system as influenced by partial organic substitution. Journal of Environmental Management, 2022, 307, 114599.	7.8	10
31	Increase in CH4 emission due to weeds incorporation prior to rice transplanting in a rice-wheat rotation system. Atmospheric Environment, 2015, 116, 83-91.	4.1	9
32	Integrated rice management simultaneously improves rice yield and nitrogen use efficiency in various paddy fields. Pedosphere, 2020, 30, 863-873.	4.0	8
33	Gaseous emissions and grain-heavy metal contents in rice paddies: A three-year partial organic substitution experiment. Science of the Total Environment, 2022, 826, 154106.	8.0	8
34	Elevated atmospheric CO2 reduces CH4 and N2O emissions under two contrasting rice cultivars from a subtropical paddy field in China. Pedosphere, 2022, 32, 707-717.	4.0	8
35	Effects of elevated CO2 concentration on CH4 and N2O emissions from paddy fields: A meta-analysis. Science China Earth Sciences, 2022, 65, 96-106.	5.2	7
36	Carbon isotope fractionation during CH4 transport in paddy fields. Science China Earth Sciences, 2014, 57, 1664-1670.	5.2	6

#	Article	IF	CITATIONS
37	Fraction of CH4 oxidized in paddy field measured by stable carbon isotopes. Plant and Soil, 2015, 389, 349-359.	3.7	5
38	Water retention and warming effect of integrated rice management for the hilly areas of southwest China. Agronomy Journal, 2020, 112, 3140-3151.	1.8	3
39	Responses of the methanogenic pathway and fraction of CH4 oxidization in a flooded paddy soil to rice planting. Pedosphere, 2021, 31, 859-871.	4.0	2