List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7013352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heteroatom-rich polymers as a protective film to control lithium growth for high-performance lithium-metal batteries. Journal of Power Sources, 2022, 521, 230949.	7.8	9
2	Co/Li-dual-site doping towards LiCoO ₂ as a high-voltage, fast-charging, and long-cycling cathode material. Journal of Materials Chemistry A, 2022, 10, 5295-5304.	10.3	21
3	Stabilized and Almost Dendrite-Free Li Metal Anodes by In Situ Construction of a Composite Protective Layer for Li Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 5298-5307.	8.0	22
4	Pushing Lithium Cobalt Oxides to 4.7ÂV by Latticeâ€Matched Interfacial Engineering. Advanced Energy Materials, 2022, 12, .	19.5	77
5	Electron/ion Conductor Double-coated LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Li-ion Battery Cathode Material and Its Electrochemical Performance. Acta Chimica Sinica, 2022, 80, 485.	1.4	0
6	Interfacial Electron Delocalization in Engineering Nanosized Anti-Perovskite Nitride for Efficient CO ₂ Electroreduction. Chemistry of Materials, 2022, 34, 5607-5620.	6.7	11
7	A dual force cross-linked Î ³ -PGA-PAA binder enhancing the cycle stability of silicon-based anodes for lithium-ion batteries. Electrochimica Acta, 2022, 425, 140704.	5.2	15
8	Design Criteria for Siliconâ€Based Anode Binders in Half and Full Cells. Advanced Energy Materials, 2022, 12, .	19.5	52
9	Engineering the interface between LiCoO ₂ and Li ₁₀ GeP ₂ S ₁₂ solid electrolytes with an ultrathin Li ₂ CoTi ₃ O ₈ interlayer to boost the performance of all-solid-state batteries. Energy and Environmental Science, 2021, 14, 437, 450	30.8	82
10	NiCo ₂ O ₄ /CNF Separator Modifiers for Trapping and Catalyzing Polysulfides for High-Performance Lithium–Sulfur Batteries with High Sulfur Loadings and Lean Electrolytes. ACS Sustainable Chemistry and Engineering, 2021, 9, 1804-1813.	6.7	31
11	Preparation of intergrown P/O-type biphasic layered oxides as high-performance cathodes for sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 13151-13160.	10.3	26
12	RuO2 nanoparticles supported on Ni and N co-doped carbon nanotubes as an efficient bifunctional electrocatalyst of lithium-oxygen battery. Science China Materials, 2021, 64, 2397-2408.	6.3	8
13	Multivalent Amide-Hydrogen-Bond Supramolecular Binder Enhances the Cyclic Stability of Silicon-Based Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22567-22576.	8.0	26
14	Controlled Synthesis of Porous Hollow Fe–N/C Nanoshells as Highâ€Performance Oxygen Reduction Reaction Electrocatalysts for Zn–Air Battery. Energy Technology, 2021, 9, 2100142.	3.8	4
15	Customizing Multifunctional Sulfur Host Materials Via a General Anionâ€Exchange Process with Metal–Organic Solid. Advanced Functional Materials, 2021, 31, 2104513.	14.9	4
16	From bulk to interface: electrochemical phenomena and mechanism studies in batteries <i>via</i> electrochemical quartz crystal microbalance. Chemical Society Reviews, 2021, 50, 10743-10763.	38.1	48
17	Improving the Electrochemical Property of Silicon Anodes through Hydrogen-Bonding Cross-Linked Thiourea-Based Polymeric Binders. ACS Applied Materials & Interfaces, 2021, 13, 639-649.	8.0	36
18	Influence of Carbonate Solvents on Solid Electrolyte Interphase Composition over Si Electrodes Monitored by <i>In Situ</i> and <i>Ex Situ</i> Spectroscopies. ACS Omega, 2021, 6, 27335-27350.	3.5	14

#	Article	IF	CITATIONS
19	Formulating a New Electrolyte: Synergy between Low-Polar and Non-polar Solvents in Tailoring the Solid Electrolyte Interface for the Silicon Anode. ACS Applied Materials & Interfaces, 2021, 13, 55700-55711.	8.0	7
20	Fabrication of multi-shell coated silicon nanoparticles via in-situ electroless deposition as high performance anodes for lithium ion batteries. Journal of Energy Chemistry, 2020, 48, 160-168.	12.9	37
21	Synergetic Effect of Ru and NiO in the Electrocatalytic Decomposition of Li ₂ CO ₃ to Enhance the Performance of a Li-CO ₂ /O ₂ Battery. ACS Catalysis, 2020, 10, 1640-1651.	11.2	85
22	The Si@Câ€Network Electrode Prepared by an Inâ€Situ Carbonization Strategy with Enhanced Cycle Performance. ChemElectroChem, 2020, 7, 4999-5004.	3.4	4
23	High Cycling Performance Liâ€S Battery via Fenugreek Gum Binder Through Chemical Bonding of the Binder with Polysulfides in Nanosulfur@CNFs Cathode. ChemistrySelect, 2020, 5, 8969-8979.	1.5	11
24	Cubic MnS–FeS ₂ Composites Derived from a Prussian Blue Analogue as Anode Materials for Sodium-Ion Batteries with Long-Term Cycle Stability. ACS Applied Materials & Interfaces, 2020, 12, 43624-43633.	8.0	53
25	Germanium Crystalline Nanomaterials for Li-Ion Storage Prepared by Decomposing LiZnGe in Air. ACS Applied Materials & Interfaces, 2020, 12, 50756-50762.	8.0	7
26	Understanding the role of water-soluble guar gum binder in reducing capacity fading and voltage decay of Li-rich cathode for Li-ion batteries. Electrochimica Acta, 2020, 351, 136401.	5.2	16
27	Controlled synthesis of FeNx-CoNx dual active sites interfaced with metallic Co nanoparticles as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 278, 119259.	20.2	92
28	High-Voltage LiCoO ₂ Material Encapsulated in a Li ₄ Ti ₅ O ₁₂ Ultrathin Layer by High-Speed Solid-Phase Coating Process. ACS Applied Energy Materials, 2020, 3, 2593-2603.	5.1	36
29	Suppressing lithium dendrite growth by a synergetic effect of uniform nucleation and inhibition. Journal of Materials Chemistry A, 2020, 8, 4300-4307.	10.3	29
30	lon-Doping-Site-Variation-Induced Composite Cathode Adjustment: A Case Study of Layer–Tunnel Na _{0.6} MnO ₂ with Mg ²⁺ Doping at Na/Mn Site. ACS Applied Materials & Interfaces, 2019, 11, 26938-26945.	8.0	28
31	A solid-state dendrite-free lithium-metal battery with improved electrode interphase and ion conductivity enhanced by a bifunctional solid plasticizer. Journal of Materials Chemistry A, 2019, 7, 19565-19572.	10.3	32
32	Si anode for next-generation lithium-ion battery. Current Opinion in Electrochemistry, 2019, 18, 46-54.	4.8	48
33	Ultrahigh sulfur content up to 93Âwt% encapsulated in multilayer nanoshell of V/V2O5 composite to suppress shuttle effect of lithium–sulfur battery with high-performance. Materials Today Energy, 2019, 13, 267-276.	4.7	29
34	High-Energy Density Li metal Dual-Ion Battery with a Lithium Nitrate-Modified Carbonate-Based Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 18504-18510.	8.0	47
35	Novel MnO–Graphite Dual-Ion Battery and New Insights into Its Reaction Mechanism during Initial Cycle by Operando Techniques. ACS Applied Materials & Interfaces, 2019, 11, 12570-12577.	8.0	35
36	Revealing of the Activation Pathway and Cathode Electrolyte Interphase Evolution of Li-Rich 0.5Li ₂ MnO ₃ ·0.5LiNi _{0.3} Co _{0.3} Mn _{0.4} O _{2 Cathode by in Situ Electrochemical Quartz Crystal Microbalance. ACS Applied Materials & Interfaces, 2019, 11, 16214-16222.}		23

#	Article	IF	CITATIONS
37	Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high performance Na0.6Mn0.95Ni0.05O2-F cathode. Electrochimica Acta, 2019, 308, 64-73.	5.2	37
38	Aluminum-Based Metal–Organic Frameworks Derived Al ₂ O ₃ -Loading Mesoporous Carbon as a Host Matrix for Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 47939-47947.	8.0	26
39	Core–Shell Structured S@Co(OH) ₂ with a Carbon-Nanofiber Interlayer: A Conductive Cathode with Suppressed Shuttling Effect for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4065-4073.	8.0	35
40	Suppressing Li dendrite by a protective biopolymeric film from tamarind seed polysaccharide for high-performance Li metal anode. Electrochimica Acta, 2019, 299, 636-644.	5.2	34
41	High-performance rechargeable Li-CO2/O2 battery with Ru/N-doped CNT catalyst. Chemical Engineering Journal, 2019, 363, 224-233.	12.7	58
42	Aluminum-sulfur composites for Li S batteries with a high-rate performance. Composites Part B: Engineering, 2019, 164, 740-746.	12.0	7
43	Cu ²⁺ Dual-Doped Layer-Tunnel Hybrid Na _{0.6} Mn _{1–<i>x</i>} Cu _{<i>x</i>} O ₂ as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability. ACS Applied Materials & amp: Interfaces. 2018. 10. 10147-10156.	8.0	98
44	Sodiumâ€Alginateâ€Based Binders for Lithiumâ€Rich Cathode Materials in Lithiumâ€Ion Batteries to Suppress Voltage and Capacity Fading. ChemElectroChem, 2018, 5, 1321-1329.	3.4	29
45	Sulfur Microspheres Encapsulated in Porous Silverâ€Based Shell with Superior Performance for Lithiumâ€Sulfur Batteries. ChemElectroChem, 2018, 5, 1683-1690.	3.4	9
46	Novel Sulfur Host Composed of Cobalt and Porous Graphitic Carbon Derived from MOFs for the High-Performance Li–S Battery. ACS Applied Materials & Interfaces, 2018, 10, 13499-13508.	8.0	54
47	Tuning the component ratio and corresponding sodium storage properties of layer-tunnel hybrid Na0.6Mn1-Ni O2 cathode by a simple cationic Ni2+ doping strategy. Electrochimica Acta, 2018, 273, 63-70.	5.2	23
48	Three-Dimensional Networks of S-Doped Fe/N/C with Hierarchical Porosity for Efficient Oxygen Reduction in Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2018, 10, 14602-14613.	8.0	50
49	Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry. ACS Applied Materials & Interfaces, 2018, 10, 12666-12677.	8.0	72
50	High-performance Si Mn/C composite anodes with integrating inactive Mn4Si7 alloy for lithium-ion batteries. Electrochimica Acta, 2018, 260, 830-837.	5.2	26
51	Enabling Lithium-Metal Anode Encapsulated in a 3D Carbon Skeleton with a Superior Rate Performance and Capacity Retention in Full Cells. ACS Applied Materials & Interfaces, 2018, 10, 35296-35305.	8.0	19
52	Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis. ACS Catalysis, 2018, 8, 11342-11351.	11.2	414
53	A Natural Biopolymer Film as a Robust Protective Layer to Effectively Stabilize Lithiumâ€Metal Anodes. Small, 2018, 14, e1801054.	10.0	61
54	Unexpected effects of zirconium-doping in the high performance sodium manganese-based layer-tunnel cathode. Journal of Materials Chemistry A, 2018, 6, 13934-13942.	10.3	32

#	Article	IF	CITATIONS
55	Fabrication of Si Nanoparticles@Conductive Carbon Framework@Polymer Composite as Highâ€Arealâ€Capacity Anode of Lithiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 3258-3265.	3.4	20
56	Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 21267-21275.	8.0	60
57	Layered/Spinel Heterostructured and Hierarchical Micro/Nanostructured Li-Rich Cathode Materials with Enhanced Electrochemical Properties for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 21065-21070.	8.0	79
58	Multiple hydrogel alginate binders for Si anodes of lithium-ion battery. Electrochimica Acta, 2017, 245, 371-378.	5.2	106
59	Graphitized porous carbon materials with high sulfur loading for lithium-sulfur batteries. Nano Energy, 2017, 32, 503-510.	16.0	118
60	Synthesis-cum-assembly toward hierarchical nanoarchitectures. Coordination Chemistry Reviews, 2017, 352, 291-305.	18.8	6
61	Co3O4@(Fe-Doped)Co(OH)2 Microfibers: Facile Synthesis, Oriented-Assembly, Formation Mechanism, and High Electrocatalytic Activity. ACS Applied Materials & Interfaces, 2017, 9, 30880-30890.	8.0	20
62	Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density. Advanced Energy Materials, 2017, 7, 1701185.	19.5	248
63	Origin of Structural Evolution in Capacity Degradation for Overcharged NMC622 via Operando Coupled Investigation. ACS Applied Materials & Interfaces, 2017, 9, 24731-24742.	8.0	78
64	<i>In Situ</i> Multitechnical Investigation into Capacity Fading of High-Voltage LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ . ACS Applied Materials & Interfaces, 2016, 8, 35323-35335.	8.0	63
65	Improving the Electrochemical Performance of Li _{1.14} Ni _{0.18} Mn _{0.62} O ₂ by Modulating Structure Defects via a Molten Salt Method. ChemElectroChem, 2016, 3, 98-104.	3.4	13
66	Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. Chemical Communications, 2016, 52, 4683-4686.	4.1	85
67	Achieving high capacity retention in lithium-sulfur batteries with an aqueous binder. Electrochemistry Communications, 2016, 72, 79-82.	4.7	43
68	P2-type Na 0.67 Mn 0.72 Ni 0.14 Co 0.14 O 2 with K + doping as new high rate performance cathode material for sodium-ion batteries. Electrochimica Acta, 2016, 216, 51-57.	5.2	59
69	A Synergistic Effect in a Composite Cathode Consisting of Spinel and Layered Structures To Increase the Electrochemical Performance for Li-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 25647-25656.	3.1	13
70	Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 257-263.	10.3	111
71	A Robust Ion onductive Biopolymer as a Binder for Si Anodes of Lithiumâ€lon Batteries. Advanced Functional Materials, 2015, 25, 3599-3605.	14.9	329
72	New insight into structural transformation in Li-rich layered oxide during the initial charging. Journal of Materials Chemistry A, 2015, 3, 12220-12229.	10.3	57

#	Article	IF	CITATIONS
73	Facile Synthesis of The Li-Rich Layered Oxide Li _{1.23} Ni _{0.09} Co _{0.12} Mn _{0.56} O ₂ with Superior Lithium Storage Performance and New Insights into Structural Transformation of the Layered Oxide Material during Charge–Discharge Cycle: In Situ XRD Characterization. ACS Applied	8.0	96
74	A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. Chemical Communications, 2014, 50, 6386.	4.1	181
75	Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery. Journal of Materials Chemistry A, 2013, 1, 3860.	10.3	195
76	XPS and ToF-SIMS Study of Electrode Processes on Snâ^'Ni Alloy Anodes for Li-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 7012-7018.	3.1	89
77	Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochimica Acta, 2011, 56, 9549-9555.	5.2	329
78	XPS and ToF-SIMS study of Sn–Co alloy thin films as anode for lithium ion battery. Journal of Power Sources, 2010, 195, 8251-8257.	7.8	111
79	XPS, time-of-flight-SIMS and polarization modulation IRRAS study of Cr2O3 thin film materials as anode for lithium ion battery. Electrochimica Acta, 2009, 54, 3700-3707.	5.2	81
80	Studies of the Interfacial Properties of an Electroplated Sn Thin Film Electrode/Electrolyte Using in Situ MFTIRS and EQCM. Langmuir, 2007, 23, 13174-13180.	3.5	79
81	Surface combinatorial studies of IR properties of nanostructured Ru film electrodes using CO as probe molecule. Electrochimica Acta, 2003, 48, 2933-2942.	5.2	21