Li Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7013287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Epoxy/Silica Composites Mechanical Properties by Introducing Graphene Oxide to the Interface. ACS Applied Materials & Interfaces, 2012, 4, 4398-4404.	8.0	288
2	An Efficient Mono-Component Polymeric Intumescent Flame Retardant for Polypropylene: Preparation and Application. ACS Applied Materials & amp; Interfaces, 2014, 6, 7363-7370.	8.0	268
3	Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. Journal of Materials Chemistry A, 2014, 2, 13955.	10.3	220
4	Vanillin-Based Epoxy Vitrimer with High Performance and Closed-Loop Recyclability. Macromolecules, 2020, 53, 621-630.	4.8	220
5	Novel Multifunctional Organic–Inorganic Hybrid Curing Agent with High Flame-Retardant Efficiency for Epoxy Resin. ACS Applied Materials & Interfaces, 2015, 7, 17919-17928.	8.0	213
6	A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing. Chemical Engineering Journal, 2018, 337, 30-39.	12.7	212
7	Halogen-Free Flame-Retardant Flexible Polyurethane Foam with a Novel Nitrogen–Phosphorus Flame Retardant. Industrial & Engineering Chemistry Research, 2012, 51, 9769-9776.	3.7	186
8	Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property. Chemical Engineering Journal, 2018, 347, 223-232.	12.7	181
9	Flame retardation of polypropylene via a novel intumescent flame retardant: Ethylenediamine-modified ammonium polyphosphate. Polymer Degradation and Stability, 2014, 106, 88-96.	5.8	160
10	Intumescence: An effect way to flame retardance and smoke suppression for polystryene. Polymer Degradation and Stability, 2012, 97, 1423-1431.	5.8	151
11	Flame-Retardant Effect of Sepiolite on an Intumescent Flame-Retardant Polypropylene System. Industrial & Engineering Chemistry Research, 2011, 50, 2047-2054.	3.7	142
12	Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property. Polymer Chemistry, 2016, 7, 3003-3012.	3.9	126
13	A flame-retardant-free and thermo-cross-linkable copolyester: Flame-retardant and anti-dripping mode of action. Polymer, 2014, 55, 2394-2403.	3.8	124
14	A review on flame retardant technology in China. Part I: development of flame retardants. Polymers for Advanced Technologies, 2010, 21, 1-26.	3.2	123
15	Inherently Flame-Retardant Flexible Polyurethane Foam with Low Content of Phosphorus-Containing Cross-Linking Agent. Industrial & Engineering Chemistry Research, 2014, 53, 1160-1171.	3.7	123
16	A novel charring agent containing caged bicyclic phosphate and its application in intumescent flame retardant polypropylene systems. Journal of Industrial and Engineering Chemistry, 2008, 14, 589-595.	5.8	117
17	Epoxy resin flame-retarded via a novel melamine-organophosphinic acid salt: Thermal stability, flame retardance and pyrolysis behavior. Journal of Analytical and Applied Pyrolysis, 2017, 128, 54-63.	5.5	116
18	A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin. Chemical Engineering Journal, 2020, 380, 122471.	12.7	110

#	Article	IF	CITATIONS
19	Flame-Retardant multifunctional epoxy resin with high performances. Chemical Engineering Journal, 2022, 427, 132031.	12.7	106
20	Aluminum Hypophosphite versus Alkyl-Substituted Phosphinate in Polyamide 6: Flame Retardance, Thermal Degradation, and Pyrolysis Behavior. Industrial & Engineering Chemistry Research, 2013, 52, 2875-2886.	3.7	104
21	Dicarboxylation of alkenes, allenes and (hetero)arenes with CO2 via visible-light photoredox catalysis. Nature Catalysis, 2021, 4, 304-311.	34.4	104
22	Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid). Polymer Degradation and Stability, 2011, 96, 1557-1561.	5.8	96
23	An efficiently halogen-free flame-retardant long-glass-fiber-reinforced polypropylene system. Polymer Degradation and Stability, 2011, 96, 363-370.	5.8	95
24	Photothermal Conversion Triggered Precisely Targeted Healing of Epoxy Resin Based on Thermoreversible Diels–Alder Network and Amino-Functionalized Carbon Nanotubes. ACS Applied Materials & Interfaces, 2017, 9, 20797-20807.	8.0	95
25	A novel efficient halogen-free flame retardant system for polycarbonate. Polymer Degradation and Stability, 2011, 96, 320-327.	5.8	93
26	Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: Thermal stability, flame retardance and smoke suppression. Polymer Degradation and Stability, 2016, 131, 62-70.	5.8	88
27	Layer-by-layer assembled flame-retardant architecture toward high-performance carbon fiber composite. Chemical Engineering Journal, 2018, 353, 550-558.	12.7	88
28	Novel phosphorus-containing imidazolium as hardener for epoxy resin aiming at controllable latent curing behavior and flame retardancy. Composites Part B: Engineering, 2020, 184, 107673.	12.0	87
29	Epoxidized soybean oil cured with tannic acid for fully bio-based epoxy resin. RSC Advances, 2018, 8, 26948-26958.	3.6	86
30	Synthesis of organo-modified α-zirconium phosphate and its effect on the flame retardancy of IFR poly(lactic acid) systems. Polymer Degradation and Stability, 2011, 96, 771-777.	5.8	82
31	A novel phosphorus-containing flame retardant for the formaldehyde-free treatment of cotton fabrics. Polymer Degradation and Stability, 2012, 97, 2487-2491.	5.8	82
32	Aryl Polyphosphonates: Useful Halogen-Free Flame Retardants for Polymers. Materials, 2010, 3, 4746-4760.	2.9	79
33	A novel flame-retardant-free copolyester: cross-linking towards self extinguishing and non-dripping. Journal of Materials Chemistry, 2012, 22, 19849.	6.7	78
34	Electrochemical Ring-Opening Dicarboxylation of Strained Carbon–Carbon Single Bonds with CO ₂ : Facile Synthesis of Diacids and Derivatization into Polyesters. Journal of the American Chemical Society, 2022, 144, 2062-2068.	13.7	75
35	Phosphorus-containing copolyesters: The effect of ionic group and itsÂanalogous phosphorus heterocycles on their flame-retardant and anti-dripping performances. Polymer, 2015, 60, 50-61.	3.8	74
36	Chain Folding in Main-Chain Liquid Crystalline Polyester with Strong π–π Interaction: An Efficient β-Nucleating Agent for Isotactic Polypropylene. Macromolecules, 2017, 50, 1610-1617.	4.8	72

#	Article	IF	CITATIONS
37	Fireâ€Safe Polyesters Enabled by Endâ€Group Capturing Chemistry. Angewandte Chemie - International Edition, 2019, 58, 9188-9193.	13.8	72
38	A phosphorusâ€containing inorganic compound as an effective flame retardant for glassâ€fiberâ€reinforced polyamide 6. Journal of Applied Polymer Science, 2011, 119, 2379-2385.	2.6	69
39	Flame-Retardant Pressure-Sensitive Adhesives Derived from Epoxidized Soybean Oil and Phosphorus-Containing Dicarboxylic Acids. ACS Sustainable Chemistry and Engineering, 2017, 5, 3353-3361.	6.7	69
40	Synergistic Effect of Layered Nanofillers in Intumescent Flame-Retardant EPDM: Montmorillonite versus Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 2013, 52, 8454-8463.	3.7	67
41	An Effective Flame Retardant and Smoke Suppression Oligomer for Epoxy Resin. Industrial & Engineering Chemistry Research, 2013, 52, 9397-9404.	3.7	67
42	Phenylmaleimide-containing PET-based copolyester: cross-linking from 2π + π cycloaddition toward flame retardance and anti-dripping. Polymer Chemistry, 2016, 7, 2698-2708.	3.9	63
43	Semi-aromatic copolyesters with high strength and fire safety via hydrogen bonds and π-π stacking. Chemical Engineering Journal, 2019, 374, 694-705.	12.7	63
44	Organic–inorganic hybrid flame retardant: preparation, characterization and application in EVA. RSC Advances, 2014, 4, 17812.	3.6	61
45	A novel polymeric intumescent flame retardant: Synthesis, thermal degradation mechanism and application in ABS copolymer. Polymer Degradation and Stability, 2012, 97, 1772-1778.	5.8	59
46	Flame retardation of glass-fibre-reinforced polyamide 6 by a novel metal salt of alkylphosphinic acid. Polymer Degradation and Stability, 2011, 96, 1538-1545.	5.8	58
47	The high-temperature self-crosslinking contribution of azobenzene groups to the flame retardance and anti-dripping of copolyesters. Journal of Materials Chemistry A, 2013, 1, 9264.	10.3	56
48	Synthesis of functionalized α-zirconium phosphate modified with intumescent flame retardant and its application in poly(lactic acid). Polymer Degradation and Stability, 2013, 98, 1731-1737.	5.8	56
49	Phosphorus-containing thermotropic liquid crystalline polymers: a class of efficient polymeric flame retardants. Polymer Chemistry, 2014, 5, 3737.	3.9	56
50	A phosphorus-containing PET ionomer: from ionic aggregates to flame retardance and restricted melt-dripping. Polymer Chemistry, 2014, 5, 1982-1991.	3.9	55
51	Carbon Fibers Decorated by Polyelectrolyte Complexes Toward Their Epoxy Resin Composites with High Fire Safety. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1375-1384.	3.8	54
52	Chain folding in main-chain liquid crystalline polyesters: from π–π stacking toward shape memory. Journal of Materials Chemistry C, 2014, 2, 6155.	5.5	52
53	Green flame-retardant flexible polyurethane foam based on cyclodextrin. Polymer Degradation and Stability, 2020, 178, 109171.	5.8	52
54	Poly(piperazinyl phosphamide): a novel highly-efficient charring agent for an EVA/APP intumescent flame retardant system. RSC Advances, 2016, 6, 30436-30444.	3.6	51

#	Article	IF	CITATIONS
55	Influence of Valence and Structure of Phosphorus-Containing Melamine Salts on the Decomposition and Fire Behaviors of Flexible Polyurethane Foams. Industrial & Engineering Chemistry Research, 2014, 53, 8773-8783.	3.7	49
56	Synergistic Effect between Aluminum Hypophosphite and Alkyl-Substituted Phosphinate in Flame-Retarded Polyamide 6. Industrial & Engineering Chemistry Research, 2013, 52, 17162-17170.	3.7	48
57	Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification. Chemosphere, 2022, 294, 133778.	8.2	48
58	Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polymer Degradation and Stability, 2011, 96, 1669-1675.	5.8	47
59	Azobenzene-containing liquid crystalline polyester with π‑'Ï€ interactions: diverse thermo- and photo-responsive behaviours. Journal of Materials Chemistry C, 2017, 5, 3306-3314.	5.5	46
60	Novel Inherently Flame-Retardant Poly(trimethylene Terephthalate) Copolyester with the Phosphorus-Containing Linking Pendent Group. Industrial & Engineering Chemistry Research, 2010, 49, 7052-7059.	3.7	45
61	Novel polyamide 6 composites based on Schiff-base containing phosphonate oligomer: High flame retardancy, great processability and mechanical property. Composites Part A: Applied Science and Manufacturing, 2021, 146, 106423.	7.6	45
62	Inherent flame retardation of semi-aromatic polyesters via binding small-molecule free radicals and charring. Polymer Chemistry, 2016, 7, 1584-1592.	3.9	43
63	Effect of different dimensional carbon nanoparticles on the shape memory behavior of thermotropic liquid crystalline polymer. Composites Science and Technology, 2017, 138, 8-14.	7.8	43
64	Epoxy resin composites reinforced and fire-retarded by surficially-treated carbon fibers via a tunable and facile process. Composites Science and Technology, 2020, 187, 107945.	7.8	43
65	Novel Flame-Retardant and Antidripping Branched Polyesters Prepared via Phosphorus-Containing Ionic Monomer as End-Capping Agent. Industrial & Engineering Chemistry Research, 2010, 49, 4190-4196.	3.7	42
66	Morphology and interference color in spherulite of poly(trimethylene terephthalate) copolyester with bulky linking pendent group. Physical Chemistry Chemical Physics, 2011, 13, 11067.	2.8	42
67	An efficient halogen-free flame retardant for glass-fibre-reinforced poly(butylene terephthalate). Polymer Degradation and Stability, 2012, 97, 158-165.	5.8	42
68	Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: From thermal crosslinking to flame retardance. Polymer Degradation and Stability, 2015, 122, 66-76.	5.8	42
69	A phosphorusâ€containing thermotropic liquid crystalline copolyester with low mesophase temperature and high flame retardance. Journal of Polymer Science Part A, 2008, 46, 5752-5759.	2.3	41
70	A new approach to improving flame retardancy, smoke suppression and anti-dripping of PET: Via arylene-ether units rearrangement reactions at high temperature. Polymer, 2015, 77, 21-31.	3.8	39
71	Fully Bio-Based Pressure-Sensitive Adhesives with High Adhesivity Derived from Epoxidized Soybean Oil and Rosin Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 13261-13270.	6.7	39
72	A novel flame-retardant acrylonitrile-butadiene-styrene system based on aluminum isobutylphosphinate and red phosphorus: Flame retardance, thermal degradation and pyrolysis behavior. Polymer Degradation and Stability, 2014, 109, 184-193.	5.8	38

#	Article	IF	CITATIONS
73	A Novel Organophosphorus Hybrid with Excellent Thermal Stability: Core–Shell Structure, Hybridization Mechanism, and Application in Flame Retarding Semi-Aromatic Polyamide. ACS Applied Materials & Interfaces, 2016, 8, 881-890.	8.0	38
74	A hybrid flame retardant for semi-aromatic polyamide: Unique structure towards self-compatibilization and flame retardation. Chemical Engineering Journal, 2018, 334, 1046-1054.	12.7	37
75	In situ reinforced and flame-retarded polycarbonate by a novel phosphorus-containing thermotropic liquid crystalline copolyester. Polymer, 2011, 52, 4150-4157.	3.8	35
76	Thermal degradation, flame retardance and mechanical properties of thermoplastic polyurethane composites based on aluminum hypophosphite. Chinese Journal of Polymer Science (English Edition), 2014, 32, 98-107.	3.8	35
77	Effect of two types of iron MMTs on the flame retardation of LDPE composite. Polymer Degradation and Stability, 2014, 103, 1-10.	5.8	32
78	Toughening Epoxy Resin Using a Liquid Crystalline Elastomer for Versatile Application. ACS Applied Polymer Materials, 2019, 1, 2291-2301.	4.4	32
79	Facile fabrication of intrinsically fire-safety epoxy resin cured with phosphorus-containing transition metal complexes for flame retardation, smoke suppression, and latent curing behavior. Chemical Engineering Journal, 2022, 442, 136097.	12.7	32
80	Transesterification-controlled compatibility and microfibrillation in PC–ABS composites reinforced by phosphorus-containing thermotropic liquid crystalline polyester. Polymer, 2009, 50, 3037-3046.	3.8	30
81	Acrylonitrile–Butadiene–Styrene Terpolymer with Metal Hypophosphites: Flame Retardance and Mechanism Research. Industrial & Engineering Chemistry Research, 2014, 53, 2299-2307.	3.7	30
82	PBT/PC Blends Compatibilized and Toughened via Copolymers in Situ Formed by MgO-Catalyzed Transesterification. Industrial & amp; Engineering Chemistry Research, 2015, 54, 1282-1291.	3.7	30
83	Flexible and electro-induced shape memory Poly(Lactic Acid)-based material constructed by inserting a main-chain liquid crystalline and selective localization of carbon nanotubes. Composites Science and Technology, 2019, 173, 1-6.	7.8	30
84	Eco-friendly synergistic cross-linking flame-retardant strategy with smoke and melt-dripping suppression for condensation polymers. Composites Part B: Engineering, 2021, 211, 108664.	12.0	29
85	Controlling Cross-Linking Networks with Different Imidazole Accelerators toward High-Performance Epoxidized Soybean Oil-Based Thermosets. ACS Sustainable Chemistry and Engineering, 2021, 9, 3267-3277.	6.7	28
86	A bio-based epoxy resin derived from p-hydroxycinnamic acid with high mechanical properties and flame retardancy. Chinese Chemical Letters, 2022, 33, 4912-4917.	9.0	28
87	Chain Extension of Polyamide 6 Using Bisoxazoline Coupling Agents. Journal of Macromolecular Science - Physics, 2008, 47, 986-999.	1.0	27
88	Flame retardation of glassâ€fiberâ€reinforced polyamide 6 by combination of aluminum phenylphosphinate with melamine pyrophosphate. Polymers for Advanced Technologies, 2011, 22, 1166-1173.	3.2	27
89	Block self-cross-linkable poly(ethylene terephthalate) copolyester via solid-state polymerization: Crystallization, cross-linking, and flame retardance. Polymer, 2015, 70, 68-76.	3.8	27
90	Block phosphorus-containing poly(trimethylene terephthalate) copolyester via solid-state polymerization: retarded crystallization and melting behaviour. CrystEngComm, 2013, 15, 2688.	2.6	24

#	Article	IF	CITATIONS
91	Phosphorus-Containing Poly(ethylene terephthalate): Solid-State Polymerization and Its Sequential Distribution. Industrial & Engineering Chemistry Research, 2013, 52, 5326-5333.	3.7	23
92	Synergistic flameâ€retardant effect of halloysite nanotubes on intumescent flame retardant in LDPE. Journal of Applied Polymer Science, 2014, 131, .	2.6	23
93	A kinked unitâ€containing thermotropic liquid crystalline copolyester with low glass transition temperature and broad phase transition temperature. Journal of Polymer Science Part A, 2009, 47, 4703-4709.	2.3	22
94	A novel thermotropic liquid crystalline copolyester containing phosphorus and aromatic ether moity toward high flame retardancy and low mesophase temperature. Journal of Polymer Science Part A, 2010, 48, 1182-1189.	2.3	21
95	Novel liquid crystalline copolyester containing amphi-mesogenic units toward multiple stimuli-response behaviors. Journal of Materials Chemistry C, 2017, 5, 9702-9711.	5.5	19
96	Semi-aromatic polyamides containing fluorenyl pendent toward excellent thermal stability, mechanical properties and dielectric performance. Polymer, 2021, 224, 123757.	3.8	19
97	Ultra-high fire-safety unsaturated polyesters enabled by self-assembled micro/nano rod from Schiff base, diphenylphosphinyl group and nickel (II) metal. Composites Part B: Engineering, 2022, 242, 110032.	12.0	19
98	Flexible Material Based on Poly(lactic acid) and Liquid Crystal with Multishape Memory Effects. ACS Sustainable Chemistry and Engineering, 2016, 4, 3820-3829.	6.7	18
99	Fire behavior of novel imidized norbornene-containing poly(ethylene terephthalate) copolymers: Influence of retro-Diels-Alder reaction at high temperature. Polymer Degradation and Stability, 2017, 146, 105-112.	5.8	18
100	Highly Toughened and Heat-Resistant Poly(lactic acid) with Balanced Strength Using an Unsaturated Liquid Crystalline Polyester via Dynamic Vulcanization. ACS Applied Polymer Materials, 2021, 3, 299-309.	4.4	18
101	Biomass-derived dynamic covalent epoxy thermoset with robust mechanical properties and facile malleability. Chinese Chemical Letters, 2022, 33, 3245-3248.	9.0	18
102	PET in situ composites improved both flame retardancy and mechanical properties by phosphorus-containing thermotropic liquid crystalline copolyester with aromatic ether moiety. Composites Science and Technology, 2012, 72, 649-655.	7.8	17
103	Phosphorus-containing poly(trimethylene terephthalate) derived from 2-(6-oxido-6H-dibenzã \in 'c,eã \in ‰ã \in '1,2ã \in ‰oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene: Synthesis, thermal degradation, combustion and pyrolysis behavior. Journal of Analytical and Applied Pyrolysis, 2013, 99, 40.48	5.5	17
104	PET-based copolyesters with bisphenol A or bisphenol F structural units: Their distinct differences in pyrolysis behaviours and flame-retardant performances. Polymer Degradation and Stability, 2015, 120, 158-168.	5.8	17
105	Bio-based removable pressure-sensitive adhesives derived from carboxyl-terminated polyricinoleate and epoxidized soybean oil. Chinese Chemical Letters, 2021, 32, 875-879.	9.0	17
106	Acrylate Elastomer Toughened and UV Stabilized Polyoxymethylene. Journal of Macromolecular Science - Physics, 2007, 46, 411-421.	1.0	16
107	Flameâ€retardant polycarbonate/acrylonitrileâ€butadieneâ€styrene based on red phosphorus encapsulated by polysiloxane: Flame retardance, thermal stability, and water resistance. Journal of Applied Polymer Science, 2012, 123, 2867-2874.	2.6	16
108	Integration of upcycling and closed-loop recycling through alternative cyclization–depolymerization. Green Chemistry, 2022, 24, 4490-4497.	9.0	16

#	Article	IF	CITATIONS
109	Relationship between Microstructure and Mechanical Properties of Ethylene-Octene Copolymer Reinforced and Toughened PP. Journal of Macromolecular Science - Physics, 2009, 48, 351-364.	1.0	15
110	Flameâ€retardant and physical properties of poly(vinyl alcohol) chemically modified by diethyl chlorophosphate. Journal of Applied Polymer Science, 2012, 125, 3517-3523.	2.6	15
111	Pyrolysis study of poly(trimethylene terephthalate) and its phosphorus-containing copolyesters. Polymer Degradation and Stability, 2012, 97, 905-913.	5.8	15
112	Preparation and characterization of Poly(vinyl alcohol)/graphene nanocomposite with enhanced thermal stability using PEtVIm-Br as stabilizer and compatibilizer. Polymer Degradation and Stability, 2016, 131, 42-52.	5.8	15
113	Effects of curing temperature on the structure and properties of epoxy resin-poly(ε-caprolactam) blends. Polymer, 2021, 228, 123940.	3.8	15
114	Low Loading of Tannic Acid-Functionalized WS ₂ Nanosheets for Robust Epoxy Nanocomposites. ACS Applied Nano Materials, 2021, 4, 10419-10429.	5.0	15
115	Multicycling of Epoxy Thermoset Through a Twoâ€Step Strategy of Alcoholysis and Hydrolysis using a Selfâ€Separating Catalysis System. ChemSusChem, 2022, 15, .	6.8	15
116	A mainâ€chain phosphorusâ€containing poly(trimethylene terephthalate) copolyester: synthesis, characterization, and flame retardance. Polymers for Advanced Technologies, 2012, 23, 1276-1282.	3.2	14
117	Aluminum Hydroxymethylphosphinate and Melamine Pyrophosphate: Synergistic Flame Retardance and Smoke Suppression for Glass Fiber Reinforced Polyamide 6. Industrial & Engineering Chemistry Research, 2013, 52, 15613-15620.	3.7	14
118	High-fire-safety thermoplastic polyester constructed by novel sulfonate with benzimidazole structure. Science China Materials, 2021, 64, 2067-2080.	6.3	14
119	Thermally induced end-group-capturing as an eco-friendly and general method for enhancing the fire safety of semi-aromatic polyesters. Polymer, 2021, 218, 123430.	3.8	13
120	Small change, big impact: Simply tailoring the substitution position towards significant improvement of flame retardancy. Composites Part B: Engineering, 2021, 223, 109109.	12.0	13
121	A novel phosphorusâ€containing copolyester with low melting temperature and high flame retardancy. Polymer International, 2009, 58, 1202-1208.	3.1	12
122	Physio- and chemo-dual crosslinking toward thermoand photo-response of azobenzene-containing liquid crystalline polyester. Science China Materials, 2018, 61, 1225-1236.	6.3	12
123	A novel phosphorusâ€containing thermotropic liquid crystalline poly(esterâ€imide) with high flame retardancy. Polymers for Advanced Technologies, 2009, 20, 378-383.	3.2	11
124	Thermal Transition Behavior, Thermal Stability, and Flame Retardancy of Low-Melting-Temperature Copolyester: Comonomer Effect. Industrial & Engineering Chemistry Research, 2013, 52, 4539-4546.	3.7	11
125	Effect of Modified Intumescent Flame Retardant via Surfactant/Polyacrylate Latex on Properties of Intumescent Flame Retardant ABS Composites. Journal of Macromolecular Science - Physics, 2008, 47, 1087-1095.	1.0	10
126	Main-chain liquid crystalline copolyesters with a phosphorus-containing non-coplanar moiety. Polymer Chemistry, 2013, 4, 329-336.	3.9	10

#	Article	IF	CITATIONS
127	Synergistic effects of novolac-based char former with a phosphorus/nitrogen-containing flame retardant in polyamide 6. Chinese Journal of Polymer Science (English Edition), 2012, 30, 72-81.	3.8	9
128	Morphology development of PP/POE blends with high loading of magnesium hydroxide. RSC Advances, 2015, 5, 17967-17975.	3.6	9
129	Tuning the Pendent Groups of Semiaromatic Polyamides toward High Performance. Macromolecules, 2020, 53, 3504-3513.	4.8	9

Polyamide 6 with a flame retardant encapsulated by polyamide 66: Flame retardation, thermo-decomposition and the potential mechanism. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0 rg**BT**&/Overlo**s**k 10 Tf 50 130

131	Main-chain liquid crystalline ionomers with a nonplanar ionic segment. RSC Advances, 2015, 5, 48541-48550.	3.6	8
132	Block phosphorus-containing poly(trimethylene terephthalate) copolyester via solid-state polymerization: Reaction kinetics and sequential distribution. Polymer, 2012, 53, 3520-3528.	3.8	6
133	Thiazolium as Singleâ€Group Bifunctional Catalyst for Selectively Bulk Melt ROP of Cyclic Esters. ChemCatChem, 2019, 11, 3388-3392.	3.7	6
134	NIR light manipulated "paper art―for customizing devices with sophisticated structure from DA-epoxy/graphene composites. Composites Part B: Engineering, 2019, 177, 107369.	12.0	6
135	SYNTHESIS OF PHOSPHORUS-CONTAINING THERMOTROPIC LIQUID CRYSTALLINE COPOLYESTERS <i>via</i> SOLID-STATE POLYMERIZATION. Acta Polymerica Sinica, 2009, 009, 493-498.	0.0	6
136	Thermal transition behaviors, solubility, and mechanical properties of wholly aromatic para-, meta-poly(ether-amide)s: effect on numbers of para-aryl ether linkages. RSC Advances, 2016, 6, 84284-84293.	3.6	4
137	Thermal Degradation and Fire Behaviors of Glass Fiber Reinforced PA6 Flame Retarded by Combination of Aluminum Hypophosphite with Melamine Derivatives. ACS Symposium Series, 2012, , 167-182.	0.5	3
138	An efficient liquid crystalline ionomer <scp>βâ€nucleating</scp> agent featuring Ï€â€Ï€ stacking and ionic interactions for isotactic polypropylene. Polymer Crystallization, 2020, 3, e10125.	0.8	3
139	SYNTHESIS AND CHARACTERIZATION OF A FLAME-RETARDANT AND ANTI-DRIPPING COPOLYESTER. Acta Polymerica Sinica, 2012, 012, 1042-1046.	0.0	3
140	Fireâ€Safe Polyesters Enabled by Endâ€Group Capturing Chemistry. Angewandte Chemie, 2019, 131, 9286-9291.	2.0	2
141	SYNTHESIS AND CHARACTERIZATION OF PHOSPHORUS-CONTAINING LIQUID CRYSTALLINE COPOLYESTERS BASED ON BIPHENYL-4,4â€2-DICARBOXYLIC ACID. Acta Polymerica Sinica, 2012, 012, 1177-1182.	0.0	2
142	Highly Flame-Retardant Liquid Crystalline Polymers. Polymers and Polymeric Composites, 2020, , 549-575.	0.6	0
143	Highly Flame-Retardant Liquid Crystalline Polymers. , 2019, , 1-27.		0