
Raymond L D Whitby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7013250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of iron-based technologies in contaminated land and groundwater remediation: A review. Science of the Total Environment, 2008, 400, 42-51.	3.9	537
2	Polyurea-Functionalized Multiwalled Carbon Nanotubes:  Synthesis, Morphology, and Raman Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 11925-11932.	1.2	227
3	The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon, 2009, 47, 73-79.	5.4	198
4	Geometric control and tuneable pore size distribution of buckypaper and buckydiscs. Carbon, 2008, 46, 949-956.	5.4	151
5	Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes. Journal of Bioscience and Bioengineering, 2007, 103, 216-220.	1.1	123
6	Driving Forces of Conformational Changes in Single-Layer Graphene Oxide. ACS Nano, 2012, 6, 3967-3973.	7.3	107
7	Chemical Control of Graphene Architecture: Tailoring Shape and Properties. ACS Nano, 2014, 8, 9733-9754.	7.3	107
8	High efficiency removal of dissolved As(III) using iron nanoparticle-embedded macroporous polymer composites. Journal of Hazardous Materials, 2011, 192, 1002-1008.	6.5	91
9	pH-driven physicochemical conformational changes of single-layer graphene oxide. Chemical Communications, 2011, 47, 9645.	2.2	83
10	Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes. Nanotechnology, 2010, 21, 115101.	1.3	67
11	Simple Approaches to Quality Large-Scale Tungsten Oxide Nanoneedles. Journal of Physical Chemistry B, 2004, 108, 15572-15577.	1.2	64
12	High temperature oxidative resistance of polyacrylonitrile-methylmethacrylate copolymer powder converting to a carbonized monolith. European Polymer Journal, 2012, 48, 97-104.	2.6	58
13	Multiwalled Carbon Nanotubes Coated with Tungsten Disulfide. Chemistry of Materials, 2002, 14, 2209-2217.	3.2	52
14	Hyperstoichiometric Interaction Between Silver and Mercury at the Nanoscale. Angewandte Chemie - International Edition, 2012, 51, 2632-2635.	7.2	48
15	Repairing Peripheral Nerves: Is there a Role for Carbon Nanotubes?. Advanced Healthcare Materials, 2016, 5, 1253-1271.	3.9	47
16	Phenolic carbon tailored for the removal of polar organic contaminants from water: A solution to the metaldehyde problem?. Water Research, 2014, 61, 46-56.	5.3	41
17	Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Composites Science and Technology, 2012, 72, 865-872.	3.8	38
18	Morphological changes and covalent reactivity assessment of single-layer graphene oxides under carboxylic group-targeted chemistry. Carbon, 2011, 49, 722-725.	5.4	36

#	Article	lF	CITATIONS
19	Morphological and chemical features of nano and macroscale carbons affecting hydrogen peroxide decomposition in aqueous media. Journal of Colloid and Interface Science, 2011, 361, 129-136.	5.0	35
20	Tungsten Disulphide Sheathed Carbon Nanotubes. ChemPhysChem, 2001, 2, 620-623.	1.0	33
21	Morphological effects of single-layer graphene oxide in the formation of covalently bonded polypyrrole composites using intermediate diisocyanate chemistry. Journal of Nanoparticle Research, 2011, 13, 4829-4837.	0.8	32
22	Relating bulk resistivity to nanoscale mechanical responses of carbon nanotubes randomly orientated in monoliths under compression. Carbon, 2010, 48, 3635-3637.	5.4	31
23	Direct confirmation that carbon nanotubes still react covalently after removal of acid-oxidative lattice fragments. Carbon, 2010, 48, 916-918.	5.4	27
24	Mechanical performance of highly compressible multi-walled carbon nanotube columns with hyperboloid geometries. Carbon, 2010, 48, 145-152.	5.4	24
25	Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1H NMR. Carbon, 2013, 57, 191-201.	5.4	24
26	In Vitro Biocompatibility of Multiwalled Carbon Nanotubes with Sensory Neurons. Advanced Healthcare Materials, 2013, 2, 728-735.	3.9	24
27	The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane–multiwalled carbon nanotube composites at low filler contents. Colloid and Polymer Science, 2013, 291, 573-583.	1.0	22
28	Dissociation of carbon dioxide and creation of carbon particles and films at room temperature. New Journal of Physics, 2007, 9, 321-321.	1.2	20
29	Carbon-cryogel hierarchical composites as effective and scalable filters for removal of trace organic pollutants from water. Journal of Environmental Management, 2016, 182, 141-148.	3.8	19
30	Nanomaterials and the Environment: Global impact of tiny materials. Nanomaterials and the Environment, 2013, 1, 1-2.	0.3	18
31	WS 2 layer formation on multi-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2003, 76, 527-532.	1.1	17
32	Rapid assembly of carbon nanotube-based magnetic composites. Materials Chemistry and Physics, 2011, 128, 514-518.	2.0	16
33	Effect of high-intensity sonication on the dispersion of carbon-based nanofilaments in cementitious composites, and its impact on mechanical performance. Materials and Design, 2017, 136, 223-237.	3.3	15
34	Applications of Activated Carbon Sorbents Based on Greek Walnut. Applied Mechanics and Materials, 0, 467, 49-51.	0.2	13
35	Novel Mg2SiO4 structures. Chemical Communications, 2004, , 2396.	2.2	12
36	Novel nanoscale architectures: coated nanotubes and other nanowires. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2127-2142.	1.6	12

RAYMOND L D WHITBY

#	Article	IF	CITATIONS
37	Low temperature synthesis of iron containing carbon nanoparticles in critical carbon dioxide. Journal of Nanoparticle Research, 2011, 13, 53-58.	0.8	12
38	Real-time imaging of complex nanoscale mechanical responses of carbon nanotubes in highly compressible porous monoliths. Nanotechnology, 2010, 21, 075707.	1.3	11
39	Single-Layer Graphenes Functionalized with Polyurea: Architectural Control and Biomolecule Reactivity. Journal of Physical Chemistry C, 2013, 117, 11829-11836.	1.5	10
40	Formation of clusters composed of C60molecules via self-assembly in critical fluids. Nanotechnology, 2007, 18, 145611.	1.3	9
41	Vibration reduction ability of MWCNT PVAc composites measured under high frequency for acoustic device application. Journal of Materials Chemistry, 2011, 21, 4150.	6.7	8
42	Synthesis and Application of Hydride Silica Composites for Rapid and Facile Removal of Aqueous Mercury. ChemPhysChem, 2013, 14, 4126-4133.	1.0	8
43	Conversion of amorphous WO3â^'xinto WS2nanotubes. Physical Chemistry Chemical Physics, 2002, 4, 3938-3940.	1.3	7
44	Creation of carbon onions and coils at low temperature in near-critical benzene irradiated with an ultraviolet laser. Nanotechnology, 2007, 18, 415604.	1.3	7
45	Dielectric properties of WS2-coated multiwalled carbon nanotubes studied by energy-loss spectroscopic profiling. Applied Physics Letters, 2005, 86, 063112.	1.5	6
46	Bacteriophage-nanocomposites: An easy and reproducible method for the construction, handling, storage and transport of conjugates for deployment of bacteriophages active against Pseudomonas aeruginosa. Journal of Microbiological Methods, 2015, 111, 111-118.	0.7	6
47	1D Nanomaterials. Journal of Nanomaterials, 2010, 2010, 1-3.	1.5	4
48	Creation of spherical carbon nanoparticles and clusters from carbon dioxide via UV dissociation at the critical point. Green Chemistry, 2012, 14, 1196.	4.6	4
49	Exfoliated production of single- and multi-layer graphenes and carbon nanofibres from the carbonisation of a co-polymer. Carbon, 2012, 50, 2018-2025.	5.4	4
50	Low temperature synthesis of fibres composed of carbon–nickel nanoparticles in super-critical carbon dioxide. Chemical Physics Letters, 2010, 493, 304-308.	1.2	3
51	Buckycolumn electrodes: a practical and improved alternative to conventional materials utilised for biological electrochemical monitoring. Journal of Materials Chemistry B, 2013, 1, 4359.	2.9	3
52	Low temperature synthesis of carbon fibres and metal-filling carbon nanoparticles with laser irradiation into near-critical benzene. RSC Advances, 2015, 5, 12671-12677.	1.7	3
53	Cationic ring-opening polymerization of lactones onto chemically modified single layer graphene oxide. Materials Express, 2014, 4, 242-246.	0.2	2
54	Tungsten Disulphide Sheathed Carbon Nanotubes. ChemPhysChem, 2001, 2, 620-623.	1.0	2

RAYMOND L D WHITBY

#	Article	IF	CITATIONS
55	Deposition of C60, C70 and C84 fullerene molecules, in benzene via a change of the fluid state, from a gas–liquid two phase region to the critical point. Journal of Supercritical Fluids, 2011, 58, 407-411.	1.6	1
56	1D Nanomaterials 2011. Journal of Nanomaterials, 2012, 2012, 1-2.	1.5	1
57	Creation of 3-dimensional carbon nanostructures from UV irradiation of carbon dioxide at room temperature. Journal of Supercritical Fluids, 2012, 72, 1-6.	1.6	1
58	Macro-scale complexity of nano- to micro-scale architecture of olivine crystals through an iodine vapour transport mechanism. Bulletin of Materials Science, 2014, 37, 239-245.	0.8	1
59	1D Nanomaterials 2012. Journal of Nanomaterials, 2013, 2013, 1-2.	1.5	О
60	1D Nanomaterials 2013. Journal of Nanomaterials, 2014, 2014, 1-2.	1.5	0