Xu-Dong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7012856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Assembled Copper Metallogel Bearing Terpyridine and Its Application as a Catalyst for the Click Reaction in Water. Langmuir, 2022, 38, 1398-1405.	3.5	11
2	Carbon nanodot-induced Eu ³⁺ -based fluorescent polymeric hydrogel for excellent phase-separation absorption of VOC. Journal of Materials Chemistry A, 2022, 10, 7941-7947.	10.3	14
3	Alkali metal ion triggered conductive and stimuli-responsive metallogels. Dyes and Pigments, 2021, 184, 108863.	3.7	5
4	Structural Tunability on Naphthalimide-Based Dendrimer Gelators via Glaser Coupling Interaction with Tailored Gelation Solvent Polarity and Stimuli-Responsive Properties. Langmuir, 2021, 37, 2677-2682.	3.5	4
5	Polydiacetylene-based gels for solvent discrimination and formation of Au/Ag nanoparticles with embedded photocatalytic performance. Materials and Design, 2021, 205, 109744.	7.0	5
6	Switchable Supramolecular Configurations of Al ³⁺ /LysTPY Coordination Polymers in a Hydrogel Network Controlled by Ultrasound and Heat. ACS Applied Materials & Interfaces, 2021, 13, 40079-40087.	8.0	23
7	Self-healable, Eu3+-based polymeric gels containing terpyridyl groups with tunable luminescence based on ion recognition. Journal of Rare Earths, 2020, 38, 705-710.	4.8	7
8	Self-healing organogels and hydrogels constructed by self-assembled bis-terpyridine complex with selective metal ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124439.	4.7	7
9	Free radical oxidation reaction for selectively solvatochromic sensors with dynamic sensing ability. Chinese Chemical Letters, 2020, 31, 1919-1922.	9.0	6
10	Healable, Phase-Selective, and White-Light-Emitting Titania Based Hybrid Lanthanide-Doped Metallogels. Inorganic Chemistry, 2020, 59, 3974-3982.	4.0	16
11	lsomeric effect of solvents on a sugar-based supergelator with self-healing ability. Applied Surface Science, 2020, 513, 145814.	6.1	10
12	A Zr-cluster based thermostable, self-healing and adaptive metallogel with chromogenic properties responds to multiple stimuli with reversible radical interaction. Chemical Communications, 2020, 56, 2439-2442.	4.1	17
13	Emission Enhancement of Peryleneâ€Bisimideâ€Based Organogel Triggered by Ultrasound. ChemistrySelect, 2020, 5, 4389-4392.	1.5	2
14	Ultrasound-induced emission color and transmittance changes of organogel based on "trans-to-cis― isomerization. Ultrasonics Sonochemistry, 2019, 58, 104659.	8.2	7
15	Instant hydrogel formation of terpyridine-based complexes triggered by DNA <i>via</i> non-covalent interaction. Nanoscale, 2019, 11, 4044-4052.	5.6	36
16	Full-color emission of a Eu ³⁺ -based mesoporous hybrid material modulated by Zn ²⁺ ions: emission color changes for Zn ²⁺ sensing <i>via</i> an ion exchange approach. Dalton Transactions, 2019, 48, 10547-10556.	3.3	19
17	An "off–on―fluorescent naphthalimide-based sensor for anions: its application in visual F ^{â``} and AcO ^{â``} discrimination in a self-assembled gel state. New Journal of Chemistry, 2019, 43, 10554-10559.	2.8	19
18	Hydrogelation Landscape Engineering and a Novel Strategy To Design Radically Induced Healable and Stimuli-Responsive Hydrogels. ACS Applied Materials & Interfaces, 2019, 11, 19605-19612.	8.0	31

Xu-Dong Yu

#	Article	IF	CITATIONS
19	Self-assembly induced hydrogelation approach as novel means of selective and visual sensing toward picric acid. Applied Surface Science, 2019, 487, 473-479.	6.1	7
20	Highly selective luminescent sensing of Cu2+ in aqueous solution based on a Eu(III)-centered periodic mesoporous organosilicas hybrid. Materials and Design, 2019, 172, 107712.	7.0	34
21	Interfacial nanostructures and acidichromism behaviors in self-assembled terpyridine derivatives Langmuir-Blodgett films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564, 1-9.	4.7	38
22	Self-healing gels triggered by ultrasound with color-tunable emission based on ion recognition. Journal of Colloid and Interface Science, 2019, 540, 134-141.	9.4	30
23	Facile construction of terpridine-based metallo-polymers in hydrogels, crystals and solutions directed by metal ions. Journal of Colloid and Interface Science, 2018, 521, 190-196.	9.4	6
24	Novel luminescent lanthanide(<scp>iii</scp>) hybrid materials: fluorescence sensing of fluoride ions and <i>N</i> , <i>N</i> -dimethylformamide. Dalton Transactions, 2018, 47, 11530-11538.	3.3	17
25	Cyclodextrin-Assisted Two-Component Sonogel for Visual Humidity Sensing. Langmuir, 2017, 33, 1090-1096.	3.5	27
26	Naphthalimide-based fluorescent gelator for construction of both organogels and stimuli-responsive metallogels. RSC Advances, 2017, 7, 25673-25677.	3.6	15
27	Effect of water on the supramolecular assembly and functionality of a naphthalimide derivative: tunable honeycomb structure with mechanochromic properties. Journal of Materials Chemistry C, 2017, 5, 5910-5916.	5.5	22
28	Fluorescent and Electrochemical Supramolecular Coordination Polymer Hydrogels Formed from Ion-Tuned Self-Assembly of Small Bis-Terpyridine Monomer. Inorganic Chemistry, 2017, 56, 7512-7518.	4.0	75
29	Photochromic property of naphthalimide derivative: Selective and visual Fâ^' recognition by NSS isomers both in solution and in a self-assembly gel. Sensors and Actuators B: Chemical, 2017, 251, 828-835.	7.8	25
30	Robust, Self-Healing, and Multistimuli-Responsive Supergelator for the Visual Recognition and Separation of Short-Chain Cycloalkanes and Alkanes. ACS Applied Materials & Interfaces, 2017, 9, 13666-13675.	8.0	52
31	Tunable multicolor emissions in a monocomponent gel system by varying the solvent, temperature and fluoride anion. Organic and Biomolecular Chemistry, 2016, 14, 11176-11182.	2.8	18
32	Ultrasound-accelerated organogel: application for visual discrimination of Hg ²⁺ from Ag ⁺ . Organic and Biomolecular Chemistry, 2016, 14, 2218-2222.	2.8	15
33	Switchable sol-gel transition controlled by ultrasound and body temperature. Supramolecular Chemistry, 2016, 28, 335-338.	1.2	7
34	Visual Recognition of Aliphatic and Aromatic Amines Using a Fluorescent Gel: Application of a Sonication-Triggered Organogel. ACS Applied Materials & Interfaces, 2015, 7, 13569-13577.	8.0	105
35	Ultrasound accelerated sugar based gel for in situ construction of a Eu ³⁺ -based metallogel via energy transfer in a supramolecular scaffold. RSC Advances, 2015, 5, 107694-107699.	3.6	11
36	Sugar based nanotube assembly for the construction of sonication triggered hydrogel: an application of the entrapment of tetracycline hydrochloride. Journal of Materials Chemistry B, 2015, 3, 7366-7371.	5.8	33

Xu-Dong Yu

#	Article	IF	CITATIONS
37	Fluorogenic and chromogenic detection of biologically important fluoride anion with schiff-bases containing 4-amino-1,8-naphthalimide unit. Journal of Luminescence, 2015, 167, 65-70.	3.1	16
38	Tunable and Switchable Control of Luminescence through Multiple Physical Stimulations in Aggregation-Based Monocomponent Systems. ACS Applied Materials & Interfaces, 2015, 7, 24312-24321.	8.0	40
39	Selective and visual Ca ²⁺ ion recognition in solution and in a self-assembly organogel of the terpyridine-based derivative triggered by ultrasound. Soft Matter, 2015, 11, 8100-8104.	2.7	24
40	Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chemical Society Reviews, 2014, 43, 5346.	38.1	418
41	Hydrophobic surface to hold a water droplet by cholesterol-based organogel with solvent-tuned morphologies. New Journal of Chemistry, 2013, 37, 1201.	2.8	10
42	Ultrasound Assisted Co-aggregation of a Two-component System with Multicolor Emission and Its Response to Acid. Acta Chimica Sinica, 2012, 70, 2016.	1.4	5
43	Sonicationâ€Triggered Instantaneous Gelâ€ŧoâ€Gel Transformation. Chemistry - A European Journal, 2010, 16, 9099-9106.	3.3	120