
Ali Mirchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7012697/publications.pdf Version: 2024-02-01

Ан Мірсні

#	Article	IF	CITATIONS
1	Aral Sea syndrome desiccates Lake Urmia: Call for action. Journal of Great Lakes Research, 2015, 41, 307-311.	1.9	271
2	Water transfer as a solution to water shortage: A fix that can Backfire. Journal of Hydrology, 2013, 491, 23-39.	5.4	263
3	Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems. Water Resources Management, 2012, 26, 2421-2442.	3.9	255
4	Iran's Socio-economic Drought: Challenges of a Water-Bankrupt Nation. Iranian Studies, 2016, 49, 997-1016.	0.1	247
5	Iran in transition. Lancet, The, 2019, 393, 1984-2005.	13.7	131
6	Anthropogenic Drought: Definition, Challenges, and Opportunities. Reviews of Geophysics, 2021, 59, e2019RG000683.	23.0	126
7	Serious games on environmental management. Sustainable Cities and Society, 2017, 29, 1-11.	10.4	106
8	System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran. Water Resources Management, 2017, 31, 1413-1434.	3.9	91
9	Quantifying Anthropogenic Stress on Groundwater Resources. Scientific Reports, 2017, 7, 12910.	3.3	87
10	Compounding effects of human activities and climatic changes on surface water availability in Iran. Climatic Change, 2019, 152, 379-391.	3.6	84
11	The Groundwater‒Energy‒Food Nexus in Iran's Agricultural Sector: Implications for Water Security. Water (Switzerland), 2019, 11, 1835.	2.7	83
12	Climate-informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts. Environmental Research Letters, 2018, 13, 084010.	5.2	82
13	Anthropogenic depletion of Iran's aquifers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	82
14	Climate Change Impacts on Maize Production in the Warm Heart of Africa. Water Resources Management, 2016, 30, 5299-5312.	3.9	69
15	Reform and renewables in China: The architecture of Yunnan's hydropower dominated electricity market. Renewable and Sustainable Energy Reviews, 2018, 94, 682-693.	16.4	64
16	Using Analytical Hierarchy Process and Multi-Influencing Factors to Map Groundwater Recharge Zones in a Semi-Arid Mediterranean Coastal Aquifer. Water (Switzerland), 2020, 12, 2525.	2.7	60
17	System dynamics simulation of regional water supply and demand using a food-energy-water nexus approach: Application to Qazvin Plain, Iran. Journal of Environmental Management, 2021, 280, 111843.	7.8	60
18	f-MOPSO: An alternative multi-objective PSO algorithm for conjunctive water use management. Journal of Hydro-Environment Research, 2017, 14, 1-18.	2.2	57

Ali Mirchi

#	Article	IF	CITATIONS
19	China's Booming Hydropower: Systems Modeling Challenges and Opportunities. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	2.6	53
20	Modeling arid/semi-arid irrigated agricultural watersheds with SWAT: Applications, challenges, and solution strategies. Journal of Hydrology, 2020, 590, 125418.	5.4	53
21	Climateâ€Induced Changes in the Risk of Hydrological Failure of Major Dams in California. Geophysical Research Letters, 2019, 46, 2130-2139.	4.0	48
22	World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security. Energies, 2012, 5, 2626-2651.	3.1	46
23	A new normal for streamflow in California in a warming climate: Wetter wet seasons and drier dry seasons. Journal of Hydrology, 2018, 567, 203-211.	5.4	42
24	Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the Irrigated Indus Basin (IIB). Science of the Total Environment, 2022, 838, 156044.	8.0	34
25	Economic impacts of urban flooding in South Florida: Potential consequences of managing groundwater to prevent salt water intrusion. Science of the Total Environment, 2018, 621, 465-478.	8.0	29
26	A negotiation support system for resolving an international trans-boundary natural resource conflict. Environmental Modelling and Software, 2014, 51, 240-249.	4.5	27
27	Battling Water Limits to Growth: Lessons from Water Trends in the Central Plateau of Iran. Environmental Management, 2021, 68, 53-64.	2.7	25
28	A comprehensive uncertainty analysis of model-estimated longitudinal and lateral dispersion coefficients in open channels. Journal of Hydrology, 2021, 603, 126850.	5.4	25
29	Water resources management in a homogenizing world: Averting the <scp>G</scp> rowth and <scp>U</scp> nderinvestment trajectory. Water Resources Research, 2014, 50, 7515-7526.	4.2	24
30	Hydrologic impacts of drought-adaptive agricultural water management in a semi-arid river basin: Case of Rincon Valley, New Mexico. Agricultural Water Management, 2018, 209, 206-218.	5.6	24
31	A Systems Approach to Holistic Total Maximum Daily Load Policy: Case of Lake Allegan, Michigan. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 544-553.	2.6	22
32	Implications of groundwater development and seawater intrusion for sustainability of a Mediterranean coastal aquifer in Tunisia. Environmental Monitoring and Assessment, 2019, 191, 696.	2.7	22
33	The environmental flows implementation challenge: Insights and recommendations across waterâ€limited systems. Wiley Interdisciplinary Reviews: Water, 2022, 9, e1565.	6.5	22
34	A Review on Interpretable and Explainable Artificial Intelligence in Hydroclimatic Applications. Water (Switzerland), 2022, 14, 1230.	2.7	20
35	Ecological-economic assessment of the effects of freshwater flow in the Florida Everglades on recreational fisheries. Science of the Total Environment, 2018, 627, 480-493.	8.0	18
36	A Multi-Model Nonstationary Rainfall-Runoff Modeling Framework: Analysis and Toolbox. Water Resources Management, 2019, 33, 3011-3024.	3.9	18

Ali Mirchi

#	Article	IF	CITATIONS
37	Desiccation of the Transboundary Hamun Lakes between Iran and Afghanistan in Response to Hydro-climatic Droughts and Anthropogenic Activities. Journal of Great Lakes Research, 2022, 48, 876-889.	1.9	18
38	Improving Continuous Hydrologic Modeling of Data-Poor River Basins Using Hydrologic Engineering Center's Hydrologic Modeling System: Case Study of Karkheh River Basin. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	1.9	15
39	A hydro-economic model of South Florida water resources system. Science of the Total Environment, 2018, 628-629, 1531-1541.	8.0	15
40	Sea Level Rise Effect on Groundwater Rise and Stormwater Retention Pond Reliability. Water (Switzerland), 2020, 12, 1129.	2.7	15
41	Impacts of reduced deposition of atmospheric nitrogen on coastal marine eco-system during substantial shift in human activities in the twenty-first century. Geomatics, Natural Hazards and Risk, 2021, 12, 2023-2047.	4.3	15
42	Urban Water Demand: Statistical Optimization Approach to Modeling Daily Demand. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	2.6	14
43	Reliability of functional forms for calculation of longitudinal dispersion coefficient in rivers. Science of the Total Environment, 2021, 791, 148394.	8.0	14
44	Facilitating Integration in Interdisciplinary Research: Lessons from a South Florida Water, Sustainability, and Climate Project. Environmental Management, 2018, 62, 1025-1037.	2.7	12
45	Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management. Environmental Research Letters, 2021, 16, 114024.	5.2	12
46	Value of irrigation water usage in South Florida agriculture. Science of the Total Environment, 2018, 626, 486-496.	8.0	11
47	Probabilistic hazard assessment of contaminated sediment in rivers. Science of the Total Environment, 2020, 703, 134875.	8.0	11
48	Simulation and Regulation of Market Operation in Hydro-Dominated Environment: The Yunnan Case. Water (Switzerland), 2017, 9, 623.	2.7	10
49	Vulnerability of a Tunisian Coastal Aquifer to Seawater Intrusion: Insights from the GALDIT Model. Water (Switzerland), 2022, 14, 1177.	2.7	8
50	System Archetypes in Water Resource Management. , 2018, , .		6
51	System-Dynamics Approach to Evaluate Climate Change Adaptation Strategies for Iran's Zayandeh-Rud Water System. , 2014, , .		5
52	Sustainable Energy Planning with Respect to Resource Use Efficiency: Insights for the United States. , 2014, , .		4
53	Spatiotemporal Dimensions of Water Stress Accounting: Incorporating Groundwater–Surface Water Interactions and Ecological Thresholds. Environmental Science & Technology, 2019, 53, 2316-2323.	10.0	3
54	Climate Change Impacts on Agricultural Water Availability in the Middle Rio Grande Basin. Journal of the American Water Resources Association, 0, , .	2.4	3

#	Article	IF	CITATIONS
55	Hydro-Economic Model of South Florida's Water Resources. , 2015, , .		2
56	Training Water Resources Systems Engineers to Communicate: Acting on Observations from On-the-Job Practitioners. Journal of Professional Issues in Engineering Education and Practice, 2019, 145, 04019012.	0.9	2
57	Water Transfer: A Fix that May Fail. , 2013, , .		1
58	Managing Water Stress and Climate Risk in South Florida. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	2.6	0