Eugen Stamate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7012669/publications.pdf Version: 2024-02-01

FUCEN STAMATE

#	Article	IF	CITATIONS
1	Metallic and Insulating Interfaces of Amorphous SrTiO ₃ -Based Oxide Heterostructures. Nano Letters, 2011, 11, 3774-3778.	9.1	304
2	Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition. Solar Energy Materials and Solar Cells, 2017, 166, 91-99.	6.2	83
3	Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO ₂ for bacterial inactivation of biological samples. Plasma Sources Science and Technology, 2011, 20, 025008.	3.1	73
4	Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates. Nature Energy, 2019, 4, 846-855.	39.5	66
5	Determination of negative-ion and electron parameters in an Ar/SF6 plasma. Journal of Applied Physics, 1998, 84, 2450-2458.	2.5	51
6	Comparison of direct and indirect plasma oxidation of NO combined with oxidation by catalyst. Fuel, 2015, 144, 137-144.	6.4	45
7	Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTS. Scientific Reports, 2020, 10, 18388.	3.3	37
8	IR and UV gas absorption measurements during NOx reduction on an industrial natural gas fired power plant. Fuel, 2010, 89, 978-985.	6.4	36
9	Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Review. ACS Applied Materials & Interfaces, 2020, 12, 39405-39424.	8.0	35
10	Monolithic thin-film chalcogenide–silicon tandem solar cells enabled by a diffusion barrier. Solar Energy Materials and Solar Cells, 2020, 207, 110334.	6.2	34
11	Plasma and catalyst for the oxidation of NO <i>x</i> . Plasma Sources Science and Technology, 2018, 27, 035001.	3.1	32
12	Modal Focusing Effect of Positive and Negative Ions by a Three-Dimensional Plasma-Sheath Lens. Physical Review Letters, 2005, 94, 125004.	7.8	28
13	Low surface damage dry etched black silicon. Journal of Applied Physics, 2017, 122, .	2.5	27
14	Influence of surface condition in Langmuir probe measurements. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 661-666.	2.1	26
15	Status and challenges in electrical diagnostics of processing plasmas. Surface and Coatings Technology, 2014, 260, 401-410.	4.8	26
16	Preparation of super-hydrophilic polyphenylsulfone nanofiber membranes for water treatment. RSC Advances, 2019, 9, 278-286.	3.6	26
17	Principle and application of a thermal probe to reactive plasmas. Applied Physics Letters, 2002, 80, 3066-3068.	3.3	25
18	Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6. Journal of Applied Physics, 2010, 107, .	2.5	25

EUGEN STAMATE

#	Article	IF	CITATIONS
19	On the surface condition of Langmuir probes in reactive plasmas. Applied Physics Letters, 2001, 78, 153-155.	3.3	24
20	Discrete focusing effect of positive ions by a plasma-sheath lens. Physical Review E, 2005, 72, 036407.	2.1	24
21	Improved ceramic anodes for SOFCs with modified electrode/electrolyte interface. Journal of Power Sources, 2012, 212, 247-253.	7.8	23
22	High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy. Energy Conversion and Management, 2015, 99, 20-27.	9.2	23
23	Wide Band Gap Cu ₂ SrSnS ₄ Solar Cells from Oxide Precursors. ACS Applied Energy Materials, 2019, 2, 7340-7344.	5.1	23
24	Properties of highly electronegative plasmas produced in a multipolar magnetic-confined device with a transversal magnetic filter. Journal Physics D: Applied Physics, 2010, 43, 155205.	2.8	21
25	On energetic electrons in a multipolar magnetically confined Ar plasma. Journal Physics D: Applied Physics, 1999, 32, 671-674.	2.8	20
26	Test function for the determination of plasma parameters by electric probes. Review of Scientific Instruments, 1999, 70, 58-62.	1.3	20
27	On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering. Journal Physics D: Applied Physics, 2016, 49, 295101.	2.8	20
28	Nitride-Based Interfacial Layers for Monolithic Tandem Integration of New Solar Energy Materials on Si: The Case of CZTS. ACS Applied Energy Materials, 2020, 3, 4600-4609.	5.1	19
29	Probe diagnostics of electronegative plasmas with bi-Maxwellian electrons. Journal of Applied Physics, 2001, 89, 2058-2064.	2.5	18
30	Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films. Journal of Power Sources, 2015, 273, 863-872.	7.8	18
31	Investigation of NO _x Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge. Japanese Journal of Applied Physics, 2013, 52, 05EE03.	1.5	17
32	Oxide route for production of Cu2ZnSnS4 solar cells by pulsed laser deposition. Solar Energy Materials and Solar Cells, 2020, 215, 110605.	6.2	17
33	Spatially Resolved Optoelectronic Properties of Al-Doped Zinc Oxide Thin Films Deposited by Radio-Frequency Magnetron Plasma Sputtering Without Substrate Heating. Nanomaterials, 2020, 10, 14.	4.1	16
34	Lowering the resistivity of aluminum doped zinc oxide thin films by controlling the self-bias during RF magnetron sputtering. Surface and Coatings Technology, 2020, 402, 126306.	4.8	16
35	Complex ion-focusing effect by the sheath above the wafer in plasma immersion ion implantation. Applied Physics Letters, 2005, 86, 261501.	3.3	14
36	High electronegativity multi-dipolar electron cyclotron resonance plasma source for etching by negative ions. Journal of Applied Physics, 2012, 111, 083303.	2.5	14

EUGEN STAMATE

#	Article	IF	CITATIONS
37	Cathode-supported hybrid direct carbon fuel cells. International Journal of Hydrogen Energy, 2017, 42, 4311-4319.	7.1	13
38	Controlling the conductivity of amorphous LaAlO3/SrTiO3 interfaces by in-situ application of an electric field during fabrication. Applied Physics Letters, 2013, 103, 031607.	3.3	12
39	Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology. Journal Physics D: Applied Physics, 2017, 50, 465201.	2.8	11
40	Sheath-lens probe for negative ion detection in reactive plasmas. Journal of Applied Physics, 2004, 95, 830-833.	2.5	10
41	Plasma parameters in the vicinity of the quartz window of a low pressure surface wave discharge produced in O2. Thin Solid Films, 2007, 515, 4869-4873.	1.8	10
42	Discrete and modal focusing effects: principles and applications. Plasma Physics and Controlled Fusion, 2012, 54, 124048.	2.1	8
43	Chemical Composition and Structure of Adsorbed Material on Pore Surfaces in Middle East Reservoir Rocks. Energy & Fuels, 2018, 32, 11234-11242.	5.1	8
44	Spin-coated \$\$hbox {Cu}_2hbox {ZnSnS}_{4}\$\$ solar cells: A study on the transformation from ink to film. Scientific Reports, 2020, 10, 20749.	3.3	8
45	Development of high-efficiency laser Thomson scattering measurement system for the investigation of EEDF in surface wave plasma. Thin Solid Films, 2006, 506-507, 679-682.	1.8	7
46	Investigation of the ion dose non-uniformity caused by sheath-lens focusing effect on silicon wafers. Thin Solid Films, 2007, 515, 4887-4891.	1.8	7
47	InGaN/GaN ultraviolet LED with a graphene/AZO transparent current spreading layer. Optical Materials Express, 2018, 8, 1818.	3.0	7
48	Controlling surface properties of electrospun polyphenylsulfone using plasma treatment and X-ray photoelectron spectroscopy. Heliyon, 2019, 5, e01943.	3.2	7
49	Low-temperature preparation and investigation of electrochemical properties of SFM/CGO composite electrode. Solid State Ionics, 2020, 356, 115435.	2.7	7
50	Response to "Comment on â€~On the surface condition of Langmuir probes in reactive plasmas' ―[Aµ Phys. Lett. 79, 2663 (2001)]. Applied Physics Letters, 2001, 79, 2665-2665.	op]. ₃	6
51	Plasma diagnostics by detecting the ion flux profile to a biased-target. Surface and Coatings Technology, 2003, 169-170, 65-68.	4.8	6
52	Improvement of the dose uniformity in plasma immersed ion implantation by introducing a vertical biased ring. Thin Solid Films, 2006, 506-507, 571-574.	1.8	6
53	Charge modulated interfacial conductivity in SrTiO3-based oxide heterostructures. Applied Physics Letters, 2011, 98, 232105.	3.3	6
54	Comparative Study of Aluminum-Doped Zinc Oxide, Gallium-Doped Zinc Oxide and Indium-Doped Tin Oxide Thin Films Deposited by Radio Frequency Magnetron Sputtering. Nanomaterials, 2022, 12, 1539.	4.1	6

EUGEN STAMATE

#	Article	IF	CITATIONS
55	Development of an SFMM/CGO composite electrode with stable electrochemical performance at different oxygen partial pressures. International Journal of Hydrogen Energy, 2022, 47, 7915-7931.	7.1	5
56	Controlling the ion flux on substrates of different geometry by sheath-lens focusing effect. Thin Solid Films, 2007, 515, 4853-4859.	1.8	4
57	Tuning the resistive switching in tantalum oxide-based memristors by annealing. AIP Advances, 2020, 10,	1.3	4
58	Spatial distribution of plasma parameters by a dual thermal-electrostatic probe in RF and DC magnetron sputtering discharges during deposition of aluminum doped zinc oxide thin films. Plasma Sources Science and Technology, 2021, 30, 045002.	3.1	3
59	Cu2ZnSnS4 from oxide precursors grown by pulsed laser deposition for monolithic CZTS/Si tandem solar cells. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	3
60	Gettering in PolySi/SiO <i>_x</i> Passivating Contacts Enables Si-Based Tandem Solar Cells with High Thermal and Contamination Resilience. ACS Applied Materials & Interfaces, 2022, 14, 14342-14358.	8.0	3
61	Visualization of the sheath-lens focusing effect to disk and square electrodes. IEEE Transactions on Plasma Science, 2005, 33, 534-535.	1.3	2
62	Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes. Applied Physics Letters, 2015, 107, 094106.	3.3	2
63	Permeability, strength and electrochemical studies on ceramic multilayers for solid-state electrochemical cells. Heliyon, 2017, 3, e00371.	3.2	2
64	Silver-substituted (Ag1-xCux)2ZnSnS4 solar cells from aprotic molecular inks. Ceramics International, 2022, 48, 21483-21491.	4.8	2
65	Principle and applications of a floating energy analyser. European Physical Journal D, 1998, 48, 1147-1159.	0.4	1
66	Investigation of energetic electrons in a 915 MHz microwave discharge produced in Ar. Thin Solid Films, 2006, 506-507, 701-704.	1.8	1
67	Using Transient Sheath Induced by Short High-voltage Pulse for Uniform Plasma Ion Implantation. Japanese Journal of Applied Physics, 2007, 46, L858-L860.	1.5	1
68	Towards solar cells with black silicon texturing passivated by a-Si:H. , 2018, , .		1
69	Dry Etching. , 2016, , 1343-1356.		0