Arno J.F. Van Hoof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7012570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic aspects of n-paraffins hydrocracking: Influence of zeolite morphology and acidity of Pd(Pt)/ZSM-5 catalysts. Journal of Catalysis, 2020, 389, 544-555.	6.2	24
2	Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nature Catalysis, 2020, 3, 526-533.	34.4	286
3	On the surface-dependent oxidation of Cu2O during CO oxidation: Cu2+ is more active than Cu+. Applied Catalysis A: General, 2020, 602, 117712.	4.3	29
4	Dynamics of silver particles during ethylene epoxidation. Applied Catalysis B: Environmental, 2020, 272, 118983.	20.2	21
5	Mordenite Nanorods Prepared by an Inexpensive Pyrrolidineâ€based Mesoporogen for Alkane Hydroisomerization. ChemCatChem, 2019, 11, 2754-2754.	3.7	0
6	A Robust Au/ZnCr ₂ O ₄ Catalyst with Highly Dispersed Gold Nanoparticles for Gas-Phase Selective Oxidation of Cyclohexanol to Cyclohexanone. ACS Catalysis, 2019, 9, 11104-11115.	11.2	20
7	Hierarchically Porous (Alumino)Silicates Prepared by an Imidazole-Based Surfactant and Their Application in Acid-Catalyzed Reactions. ACS Applied Materials & Interfaces, 2019, 11, 40151-40162.	8.0	8
8	Structure Sensitivity of Silver-Catalyzed Ethylene Epoxidation. ACS Catalysis, 2019, 9, 9829-9839.	11.2	34
9	<i>In situ</i> structural evolution of single particle model catalysts under ambient pressure reaction conditions. Nanoscale, 2019, 11, 331-338.	5.6	10
10	The Important Role of Rubidium Hydroxide in the Synthesis of Hierarchical ZSM-5 Zeolite Using Cetyltrimethylammonium as Structure-Directing Agent. European Journal of Inorganic Chemistry, 2019, 2019, 2493-2497.	2.0	3
11	Mild dealumination of template-stabilized zeolites by NH ₄ F. Catalysis Science and Technology, 2019, 9, 4239-4247.	4.1	16
12	Unraveling the Role of Lithium in Enhancing the Hydrogen Evolution Activity of MoS ₂ : Intercalation versus Adsorption. ACS Energy Letters, 2019, 4, 1733-1740.	17.4	45
13	Tunable colloidal Ni nanoparticles confined and redistributed in mesoporous silica for CO ₂ methanation. Catalysis Science and Technology, 2019, 9, 2578-2591.	4.1	31
14	Mordenite Nanorods Prepared by an Inexpensive Pyrrolidineâ€based Mesoporogen for Alkane Hydroisomerization. ChemCatChem, 2019, 11, 2803-2811.	3.7	14
15	Enhancing the electrocatalytic activity of 2H-WS ₂ for hydrogen evolution <i>via</i> defect engineering. Physical Chemistry Chemical Physics, 2019, 21, 6071-6079.	2.8	60
16	A versatile mono-quaternary ammonium salt as a mesoporogen for the synthesis of hierarchical zeolites. Catalysis Science and Technology, 2019, 9, 6737-6748.	4.1	4
17	Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis. Journal of Catalysis, 2018, 362, 106-117.	6.2	108
18	A dual-templating synthesis strategy to hierarchical ZSM-5 zeolites as efficient catalysts for the methanol-to-hydrocarbons reaction. Journal of Catalysis, 2018, 361, 135-142.	6.2	66

Arno J.F. Van Hoof

#	Article	IF	CITATIONS
19	Reversible Restructuring of Silver Particles during Ethylene Epoxidation. ACS Catalysis, 2018, 8, 11794-11800.	11.2	42
20	The Influence and Removability of Colloidal Capping Agents on Carbon Monoxide Hydrogenation by Zirconia‣upported Rhodium Nanoparticles. ChemCatChem, 2017, 9, 1018-1024.	3.7	7
21	Silylation enhances the performance of Au/Ti–SiO2 catalysts in direct epoxidation of propene using H2 and O2. Journal of Catalysis, 2016, 344, 434-444.	6.2	46
22	Pt-Re synergy in aqueous-phase reforming of glycerol and the water–gas shift reaction. Journal of Catalysis, 2014, 311, 88-101.	6.2	103
23	Development of Methods for the Determination of pK _a Values. Analytical Chemistry Insights, 2013, 8, ACI.S12304.	2.7	275