Luis De La Torre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7012534/publications.pdf

Version: 2024-02-01

all docs

516710 315739 1,526 68 16 38 citations h-index g-index papers 68 68 68 1229 docs citations times ranked citing authors

#	Article	IF	Citations
1	Using IoT-Type Metadata and Smart Web Design to Create User Interfaces Automatically. IEEE Transactions on Industrial Informatics, 2023, 19, 3109-3118.	11.3	7
2	A Study of Strategies for Developing Online Laboratories. IEEE Transactions on Learning Technologies, 2021, 14, 777-787.	3.2	12
3	Self-Organized Laboratories for Smart Campus. IEEE Transactions on Learning Technologies, 2020, 13, 404-416.	3.2	22
4	Evidence-Based Control Engineering Education: Evaluating the LCSD Simulation Tool. IEEE Access, 2020, 8, 170183-170194.	4.2	8
5	Automatic Generation and Easy Deployment of Digitized Laboratories. IEEE Transactions on Industrial Informatics, 2020, 16, 7328-7337.	11.3	30
6	A Master Course on Automatic Control Based on the Use of Online Labs. IFAC-PapersOnLine, 2020, 53, 17542-17547.	0.9	4
7	Learning planar robotics with an open source online laboratory. IFAC-PapersOnLine, 2020, 53, 17222-17227.	0.9	1
8	A new architecture for the design of virtual/remote labs: The coupled drives system as a case of study. , 2019, , .		8
9	The Air Levitation System. IFAC-PapersOnLine, 2019, 52, 33-35.	0.9	2
10	Using Server-Sent Events for Event-Based Control in Networked Control Systems. IFAC-PapersOnLine, 2019, 52, 260-265.	0.9	3
11	Using Server-Sent Events for Event-Based Control Laboratory Practices in Distance and Blended Learning. , 2019, , .		3
12	A Master Course on Automatic Control with Remote Labs. IFAC-PapersOnLine, 2019, 52, 48-49.	0.9	5
13	Automated Assessment and Monitoring Support for Competency-Based Courses. IEEE Access, 2019, 7, 41043-41051.	4.2	18
14	Safe Experimentation in Optical Levitation of Charged Droplets Using Remote Labs. Journal of Visualized Experiments, 2019, , .	0.3	4
15	Remote experiments with pneumatic circuit using a double rod cylinder. , 2019, , .		2
16	PuzzlEx: an Online Experimentation Environment for Control Engineering Labs. , 2019, , .		6
17	Combining Virtual and Remote Interactive Labs and Visual/Textual Programming: The Furuta PendulumAExperience. Lecture Notes in Networks and Systems, 2019, , 100-109.	0.7	O
18	Stochastic Programming Approach for Resource Selection Under Demand Uncertainty. Lecture Notes in Computer Science, 2019, , 107-126.	1.3	1

#	Article	IF	Citations
19	Customized Online Laboratory Experiments: A General Tool and Its Application to the Furuta Inverted Pendulum [Focus on Education]. IEEE Control Systems, 2019, 39, 75-87.	0.8	24
20	Web Experimentation on Virtual and Remote Laboratories. Lecture Notes in Networks and Systems, 2018, , 205-219.	0.7	0
21	Flipping the Remote Lab with Low Cost Rapid Prototyping Technologies. Lecture Notes in Networks and Systems, 2018, , 250-257.	0.7	2
22	Sizing and placement model of energy storage systems in an interactive simulation tool for power distribution networks. , 2018, , .		0
23	Open-Source Hardware in Education: A Systematic Mapping Study. IEEE Access, 2018, 6, 72094-72103.	4.2	22
24	Design and development of a flexible control laboratory plant for educational purposes. , 2018, , .		2
25	Coupled tanks laboratory for teaching multivariable control concepts. , 2018, , .		3
26	Towards Efficient Resource Allocation for Distributed Workflows Under Demand Uncertainties. Lecture Notes in Computer Science, 2018, , 103-121.	1.3	4
27	On the Fully Automation of the Vibrating String Experiment. Lecture Notes in Networks and Systems, 2018, , 469-482.	0.7	1
28	Collecting Experience Data from Remotely Hosted Learning Applications. Lecture Notes in Networks and Systems, 2018, , 170-181.	0.7	6
29	The experiment editor: supporting inquiry-based learning with virtual labs. European Journal of Physics, 2017, 38, 035702.	0.6	12
30	Conducting Online Lab Experiments with Blockly. IFAC-PapersOnLine, 2017, 50, 13474-13479.	0.9	6
31	Low cost air invitation remote lab. , 2017, , .		O
32	Blockly experiments for EjsS laboratories. , 2017, , .		3
33	An open software - open hardware lab of the air levitation system. IFAC-PapersOnLine, 2017, 50, 9168-9173.	0.9	9
34	Design of a Low-Cost Air Levitation System for Teaching Control Engineering. Sensors, 2017, 17, 2321.	3.8	34
35	Assisted Creation and Deployment of Javascript Remote Experiments. International Journal of Online Engineering, 2016, 12, 22.	0.5	3
36	What remote labs can do for you. Physics Today, 2016, 69, 48-53.	0.3	43

#	Article	IF	Citations
37	Automated experiments on EjsS laboratories. , 2016, , .		2
38	A new model for a remote connection with hardware devices using Javascript. , 2016, , .		1
39	Lightweight Node.js & EJsS-based Web Server for Remote Control Laboratories**This work has been supported by the Spanish National Research Project DPI2013-46665-C2-R1 IFAC-PapersOnLine, 2016, 49, 127-132.	0.9	6
40	Virtual Control Labs Experimentation: The Water Tank System. IFAC-PapersOnLine, 2016, 49, 87-92.	0.9	7
41	A new Model for a Remote Connection with Hardware Devices using Javascript**This work was supported in part by the Spanish Ministry of Economy and Competitiveness under Project DPI2012-31303 IFAC-PapersOnLine, 2016, 49, 133-137.	0.9	3
42	Virtual and remote labs in control education: A survey. Annual Reviews in Control, 2016, 42, 1-10.	7.9	136
43	Easy creation and deployment of Javascript remote labs with EjsS and Moodle. , 2016, , .		5
44	Virtual and remote labs in education: A bibliometric analysis. Computers and Education, 2016, 98, 14-38.	8.3	353
45	Adding automatic evaluation to interactive virtual labs. Interactive Learning Environments, 2016, 24, 1456-1476.	6.4	11
46	Performing Automated Experiments with EJsS Laboratories. IFAC-PapersOnLine, 2015, 48, 134-139.	0.9	0
47	An Architecture to use Easy Java-Javascript Simulations in New Devices**Sponsor and financial support acknowledgment goes here. Paper titles should be written in uppercase and lowercase letters, not all uppercase IFAC-PapersOnLine, 2015, 48, 129-133.	0.9	8
48	Enhancing web-based labs in Moodle by providing automatic support for different types of files. , 2015, , .		0
49	Open and Low-Cost Virtual and Remote Labs on Control Engineering. IEEE Access, 2015, 3, 805-814.	4.2	109
50	The Ball and Beam System: A Case Study of Virtual and Remote Lab Enhancement With Moodle. IEEE Transactions on Industrial Informatics, 2015, 11, 934-945.	11.3	94
51	A virtual and remote lab of the two electric coupled drives system in the University Network of Interactive Laboratories. , $2015, \ldots$		4
52	Making EJS applications at the OSP digital library available from Moodle. , 2014, , .		5
53	Remote Control Laboratory Using EJS Applets and TwinCAT Programmable Logic Controllers. IEEE Transactions on Education, 2013, 56, 156-164.	2.4	42
54	On the performance comparison of multi-objective evolutionary UAV path planners. Information Sciences, 2013, 238, 111-125.	6.9	68

#	Article	IF	CITATIONS
55	Providing collaborative support to virtual and remote laboratories. IEEE Transactions on Learning Technologies, 2013, 6, 312-323.	3.2	71
56	A Virtual and Remote Control Laboratory in Moodle: The Ball and Beam System. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 72-77.	0.4	9
57	Synchronous Collaboration with Virtual and Remote Labs in Moodle. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 270-275.	0.4	3
58	Enhancing Virtual and Remote Labs to Perform Automatic Evaluation. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 276-281.	0.4	5
59	EasyJava Simulations meets TwinCAT: Remote Real-Time Control Experiments using Programmable Logic Controllers. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 294-299.	0.4	3
60	Exemplar driven development of software product lines. Expert Systems With Applications, 2012, 39, 12885-12896.	7.6	56
61	Physics Experiments at the UNEDLabs Portal. International Journal of Online and Biomedical Engineering, 2012, 8, 26.	1.4	6
62	Two web-based laboratories of the FisL@bs network: Hooke's and Snell's laws. European Journal of Physics, 2011, 32, 571-584.	0.6	33
63	Performance analysis of multiobjective bio-inspired UAV path planners. , 2011, , .		0
64	Evolutionary Trajectory Planner for Multiple UAVs in Realistic Scenarios. IEEE Transactions on Robotics, 2010, 26, 619-634.	10.3	176
65	Teaching Control supported by Virtual Labs under a Competency-based curriculum. , 0, , .		0
66	Entorno de experimentación para laboratorios en lÃnea: el caso del péndulo de Furuta. , 0, , .		0
67	Thermal Analysis of the MIPS Processor Formulated within DEVS Conventions., 0,, 103-144.		0
68	Un nuevo modelo para la conexi $ ilde{A}^3$ n remota con hardware usando Javascript. , 0, , .		0