
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7012501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal?. , 2022, 229, 107934.		19
2	The novel dual-mechanism Kv7 potassium channel/TSPO receptor activator GRT-X is more effective than the Kv7 channel opener retigabine in the 6-Hz refractory seizure mouse model. Neuropharmacology, 2022, 203, 108884.	2.0	7
3	CNS pharmacology of NKCC1 inhibitors. Neuropharmacology, 2022, 205, 108910.	2.0	31
4	Is P-Glycoprotein Functionally Expressed in the Limiting Membrane of Endolysosomes? A Biochemical and Ultrastructural Study in the Rat Liver. Cells, 2022, 11, 1556.	1.8	4
5	Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Frontiers in Molecular Neuroscience, 2022, 15, .	1.4	13
6	Bumetanide for neonatal seizures: No light in the pharmacokinetic/dynamic tunnel. Epilepsia, 2022, 63, 1868-1873.	2.6	12
7	The search for brain-permeant NKCC1 inhibitors for the treatment of seizures: Pharmacokinetic-pharmacodynamic modelling of NKCC1 inhibition by azosemide, torasemide, and bumetanide in mouse brain. Epilepsy and Behavior, 2021, 114, 107616.	0.9	17
8	Systematic evaluation of rationally chosen multitargeted drug combinations: a combination of low doses of levetiracetam, atorvastatin and ceftriaxone exerts antiepileptogenic effects in a mouse model of acquired epilepsy. Neurobiology of Disease, 2021, 149, 105227.	2.1	10
9	Hydrolytic biotransformation of the bumetanide ester prodrug DIMAEB to bumetanide by esterases in neonatal human and rat serum and neonatal rat brain—A new treatment strategy for neonatal seizures?. Epilepsia, 2021, 62, 269-278.	2.6	5
10	Phenobarbital and midazolam suppress neonatal seizures in a noninvasive rat model of birth asphyxia, whereas bumetanide is ineffective. Epilepsia, 2021, 62, 920-934.	2.6	34
11	Anticonvulsant Agents: Pharmacology and Biochemistry. , 2021, , 1-27.		0
12	The ups and downs of alkylâ€carbamates in epilepsy therapy: How does cenobamate differ?. Epilepsia, 2021, 62, 596-614.	2.6	40
13	Effects of the NKCC1 inhibitors bumetanide, azosemide, and torasemide alone or in combination with phenobarbital on seizure threshold in epileptic and nonepileptic mice. Neuropharmacology, 2021, 185, 108449.	2.0	8
14	Reply to the commentary by Benâ€Ari and Delpire: Bumetanide and neonatal seizures: Fiction versus reality. Epilepsia, 2021, 62, 941-946.	2.6	19
15	A combination of phenobarbital and the bumetanide derivative bumepamine prevents neonatal seizures and subsequent hippocampal neurodegeneration in a rat model of birth asphyxia. Epilepsia, 2021, 62, 1460-1471.	2.6	16
16	Antiepileptogenesis and disease modification: Progress, challenges, and the path forward—Report of the Preclinical Working Group of the 2018 NINDSâ€sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open, 2021, 6, 276-296.	1.3	24
17	Deletion of the Na-K-2Cl cotransporter NKCC1 results in a more severe epileptic phenotype in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Neurobiology of Disease, 2021, 152, 105297.	2.1	11
18	The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond, CNS Drugs, 2021, 35, 935-963.	2.7	108

#	Article	IF	CITATIONS
19	Similarities and differences in the localization, trafficking, and function of P-glycoprotein in MDR1-EGFP-transduced rat versus human brain capillary endothelial cell lines. Fluids and Barriers of the CNS, 2021, 18, 36.	2.4	5
20	Longâ€ŧerm outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: Cognitive impairment, anxiety, epilepsy, and structural brain alterations. Epilepsia, 2021, 62, 2826-2844.	2.6	13
21	Scopolamine prevents aberrant mossy fiber sprouting and facilitates remission of epilepsy after brain injury. Neurobiology of Disease, 2021, 158, 105446.	2.1	6
22	Anticonvulsant Agents: Pharmacology and Biochemistry. , 2021, , 1-27.		0
23	Single-Target Versus Multi-Target Drugs Versus Combinations of Drugs With Multiple Targets: Preclinical and Clinical Evidence for the Treatment or Prevention of Epilepsy. Frontiers in Pharmacology, 2021, 12, 730257.	1.6	42
24	The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology, 2020, 167, 107605.	2.0	94
25	Selective inhibition of mTORC1/2 or PI3K/mTORC1/2 signaling does not prevent or modify epilepsy in the intrahippocampal kainate mouse model. Neuropharmacology, 2020, 162, 107817.	2.0	16
26	Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiology of Disease, 2020, 134, 104664.	2.1	24
27	In memoriam Dieter Schmidt. Epilepsy and Behavior, 2020, 103, 106583.	0.9	1
28	A faceâ€ŧoâ€face comparison of the intraâ€amygdala and intrahippocampal kainate mouse models of mesial temporal lobe epilepsy and their utility for testing novel therapies. Epilepsia, 2020, 61, 157-170.	2.6	30
29	The circadian dynamics of the hippocampal transcriptome and proteome is altered in experimental temporal lobe epilepsy. Science Advances, 2020, 6, .	4.7	50
30	Novel brain permeant mTORC1/2 inhibitors are as efficacious as rapamycin or everolimus in mouse models of acquired partial epilepsy and tuberous sclerosis complex. Neuropharmacology, 2020, 180, 108297.	2.0	23
31	Disruption of the sodium-dependent citrate transporter SLC13A5 in mice causes alterations in brain citrate levels and neuronal network excitability in the hippocampus. Neurobiology of Disease, 2020, 143, 105018.	2.1	30
32	Epilepsy and Alterations of the Blood–Brain Barrier: Cause or Consequence of Epileptic Seizures or Both?. Handbook of Experimental Pharmacology, 2020, , 1.	0.9	10
33	Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain?. Pharmaceutics, 2020, 12, 966.	2.0	16
34	A face-to-face comparison of claudin-5 transduced human brain endothelial (hCMEC/D3) cells with porcine brain endothelial cells as blood–brain barrier models for drug transport studies. Fluids and Barriers of the CNS, 2020, 17, 53.	2.4	19
35	4-(Difluoromethyl)-5-(4-((3 <i>R</i> ,5 <i>S</i>)-3,5-dimethylmorpholino)-6-((<i>R</i>)-3-methylmorpholino)-1,3,5 (PQR626), a Potent, Orally Available, and Brain-Penetrant mTOR Inhibitor for the Treatment of Neurological Disorders. Journal of Medicinal Chemistry, 2020, 63, 13595-13617.	5-triazin-2- 2.9	yl)pyridin-2-a 17
36	Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacological Reviews, 2020, 72, 606-638.	7.1	360

#	Article	IF	CITATIONS
37	Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy?. Epilepsia, 2020, 61, 359-386.	2.6	57
38	Lack of antidepressant effects of burst-suppressing isoflurane anesthesia in adult male Wistar outbred rats subjected to chronic mild stress. PLoS ONE, 2020, 15, e0235046.	1.1	6
39	Structural, Molecular, and Functional Alterations of the Blood-Brain Barrier during Epileptogenesis and Epilepsy: A Cause, Consequence, or Both?. International Journal of Molecular Sciences, 2020, 21, 591.	1.8	130
40	The feast and famine: Epilepsy treatment and treatment gaps in early 21st century. Neuropharmacology, 2020, 170, 108055.	2.0	17
41	Consequences of housing conditions and interindividual diversity in rodent models of acquired epilepsy. Epilepsia, 2019, 60, 2016-2019.	2.6	1
42	Commonalities and differences in extracellular levels of hippocampal acetylcholine and amino acid neurotransmitters during status epilepticus and subsequent epileptogenesis in two rat models of temporal lobe epilepsy. Brain Research, 2019, 1712, 109-123.	1.1	16
43	Facets of Theiler's Murine Encephalomyelitis Virus-Induced Diseases: An Update. International Journal of Molecular Sciences, 2019, 20, 448.	1.8	52
44	Association of Piriform Cortex Resection With Surgical Outcomes in Patients With Temporal Lobe Epilepsy. JAMA Neurology, 2019, 76, 690.	4.5	69
45	Network pharmacology for antiepileptogenesis: Tolerability and neuroprotective effects of novel multitargeted combination treatments in nonepileptic vs. post-status epilepticus mice. Epilepsy Research, 2019, 151, 48-66.	0.8	16
46	High efficacy of rituximab for myasthenia gravis: a comprehensive nationwide study in Austria. Journal of Neurology, 2019, 266, 699-706.	1.8	56
47	Changes of dimension of EEC/ECoG nonlinear dynamics predict epileptogenesis and therapy outcomes. Neurobiology of Disease, 2019, 124, 373-378.	2.1	10
48	Evaluation of Associated Behavioral and Cognitive Deficits in Anticonvulsant Drug Testing. , 2019, , 171-192.		1
49	Rolle von Makrophagen von Mikroglia in der Entstehung von akuten AnfÄ k en bei der murinen Theilervirusinfektion. Tierarztliche Praxis Ausgabe K: Kleintiere - Heimtiere, 2019, 47, .	0.3	Ο
50	P11 promoter methylation predicts the antidepressant effect of electroconvulsive therapy. Translational Psychiatry, 2018, 8, 25.	2.4	32
51	Commonalities in epileptogenic processes from different acute brain insults: Do they translate?. Epilepsia, 2018, 59, 37-66.	2.6	206
52	Macrophage depletion by liposome-encapsulated clodronate suppresses seizures but not hippocampal damage after acute viral encephalitis. Neurobiology of Disease, 2018, 110, 192-205.	2.1	44
53	Bumepamine, a brain-permeant benzylamine derivative of bumetanide, does not inhibit NKCC1 but is more potent to enhance phenobarbital's anti-seizure efficacy. Neuropharmacology, 2018, 143, 186-204.	2.0	41
54	Mechanism of drug extrusion by brain endothelial cells via lysosomal drug trapping and disposal by neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9590-E9599.	3.3	35

#	Article	IF	CITATIONS
55	Automated quantification of EEG spikes and spike clusters as a new read out in Theiler's virus mouse model of encephalitis-induced epilepsy. Epilepsy and Behavior, 2018, 88, 189-204.	0.9	20
56	Cerebral influx of Na+ and Clâ^' as the osmotherapy-mediated rebound response in rats. Fluids and Barriers of the CNS, 2018, 15, 27.	2.4	10
57	Humanization of the blood–brain barrier transporter ABCB1 in mice disrupts genomic locus — lessons from three unsuccessful approaches. European Journal of Microbiology and Immunology, 2018, 8, 78-86.	1.5	2
58	A companion to the preclinical common data elements for pharmacologic studies in animal models of seizures and epilepsy. A Report of the <scp>TASK</scp> 3 Pharmacology Working Group of the <scp>ILAE</scp> / <scp>AES</scp> Joint Translational Task Force. Epilepsia Open, 2018, 3, 53-68.	1.3	30
59	Discovery and Preclinical Characterization of 5-[4,6-Bis({3-oxa-8-azabicyclo[3.2.1]octan-8-yl})-1,3,5-triazin-2-yl]-4-(difluoromethyl)pyridin-2-amine (PQR620), a Highly Potent and Selective mTORC1/2 Inhibitor for Cancer and Neurological Disorders. Journal of Medicinal Chemistry, 2018, 61, 10084-10105.	2.9	62
60	Microglia have a protective role in viral encephalitis-induced seizure development and hippocampal damage. Brain, Behavior, and Immunity, 2018, 74, 186-204.	2.0	77
61	Anticonvulsant effects after grafting of rat, porcine, and human mesencephalic neural progenitor cells into the rat subthalamic nucleus. Experimental Neurology, 2018, 310, 70-83.	2.0	13
62	Chemokine receptors CCR2 and CX3CR1 regulate viral encephalitis-induced hippocampal damage but not seizures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8929-E8938.	3.3	47
63	Male offspring born to mildly ZIKV-infected mice are at risk of developing neurocognitive disorders in adulthood. Nature Microbiology, 2018, 3, 1161-1174.	5.9	24
64	Commentary on "The impact of nonadherence to antiseizure drugs on seizure outcomes in an animal model of epilepsy― Epilepsia, 2018, 59, 1093-1093.	2.6	2
65	Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B. Scientific Reports, 2018, 8, 9877.	1.6	31
66	The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology, 2018, 140, 107-120.	2.0	64
67	Grey matter volume in healthy and epileptic beagles using voxel-based morphometry – a pilot study. BMC Veterinary Research, 2018, 14, 50.	0.7	7
68	Blood–Brain Barrier Leakage during Early Epileptogenesis Is Associated with Rapid Remodeling of the Neurovascular Unit. ENeuro, 2018, 5, ENEURO.0123-18.2018.	0.9	45
69	Common data elements and data management: Remedy to cure underpowered preclinical studies. Epilepsy Research, 2017, 129, 87-90.	0.8	35
70	Various modifications of the intrahippocampal kainate model of mesial temporal lobe epilepsy in rats fail to resolve the marked rat-to-mouse differences in type and frequency of spontaneous seizures in this model. Epilepsy and Behavior, 2017, 68, 129-140.	0.9	16
71	Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology, 2017, 117, 182-194.	2.0	65
72	Gene therapy decreases seizures in a model of <i>Incontinentia pigmenti</i> . Annals of Neurology, 2017, 82, 93-104.	2.8	20

#	Article	IF	CITATIONS
73	The intrahippocampal kainate mouse model of mesial temporal lobe epilepsy: Lack of electrographic seizureâ€like events in sham controls. Epilepsia Open, 2017, 2, 180-187.	1.3	32
74	Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochemical Research, 2017, 42, 1873-1888.	1.6	250
75	Viral mouse models of multiple sclerosis and epilepsy: Marked differences in neuropathogenesis following infection with two naturally occurring variants of Theiler's virus BeAn strain. Neurobiology of Disease, 2017, 99, 121-132.	2.1	24
76	A combination of NMDA and AMPA receptor antagonists retards granule cell dispersion and epileptogenesis in a model of acquired epilepsy. Scientific Reports, 2017, 7, 12191.	1.6	30
77	Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurology, The, 2017, 16, 976-986.	4.9	472
78	Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia, 2017, 58, 27-38.	2.6	131
79	Neuroinflammation in epileptogenesis: Insights and translational perspectives from new models of epilepsy. Epilepsia, 2017, 58, 39-47.	2.6	82
80	The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy and Behavior, 2017, 73, 214-235.	0.9	54
81	The Search for New Screening Models of Pharmacoresistant Epilepsy: Is Induction of Acute Seizures in Epileptic Rodents a Suitable Approach?. Neurochemical Research, 2017, 42, 1926-1938.	1.6	44
82	Strain Effects on Expression of Seizures and Epilepsy. , 2017, , 21-38.		3
83	Animal Models of Drug-Refractory Epilepsy. , 2017, , 743-760.		10
84	The bumetanide prodrug <scp>BUM</scp> 5, but not bumetanide, potentiates the antiseizure effect of phenobarbital in adult epileptic mice. Epilepsia, 2016, 57, 698-705.	2.6	41
85	Clinical evaluation of a combination therapy of imepitoin with phenobarbital in dogs with refractory idiopathic epilepsy. BMC Veterinary Research, 2016, 13, 33.	0.7	13
86	The effects of carbamazepine in the intrahippocampal kainate model of temporal lobe epilepsy depend on seizure definition and mouse strain. Epilepsia Open, 2016, 1, 45-60.	1.3	30
87	P.4.017 Epigenetic alterations of the glia cell-derived neurotrophic factor and response to electroconvulsive stimulation. European Neuropsychopharmacology, 2016, 26, S99-S100.	0.3	0
88	Behavioral differences of male Wistar rats from different vendors in vulnerability and resilience to chronic mild stress are reflected in epigenetic regulation and expression of p11. Brain Research, 2016, 1642, 505-515.	1.1	32
89	Brain inflammation, neurodegeneration and seizure development following picornavirus infection markedly differ among virus and mouse strains and substrains. Experimental Neurology, 2016, 279, 57-74.	2.0	57
90	Evaluation of the pentylenetetrazole seizure threshold test in epileptic mice as surrogate model for drug testing against pharmacoresistant seizures. Epilepsy and Behavior, 2016, 57, 95-104.	0.9	16

#	Article	IF	CITATIONS
91	The search for NKCC1-selective drugs for the treatment of epilepsy: Structure–function relationship of bumetanide and various bumetanide derivatives in inhibiting the human cation-chloride cotransporter NKCC1A. Epilepsy and Behavior, 2016, 59, 42-49.	0.9	38
92	Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Research, 2016, 126, 157-184.	0.8	127
93	Pilot PET Study to Assess the Functional Interplay Between ABCB1 and ABCG2 at the Human Blood–Brain Barrier. Clinical Pharmacology and Therapeutics, 2016, 100, 131-141.	2.3	50
94	Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs, 2016, 30, 1055-1077.	2.7	119
95	Isoflurane prevents acquired epilepsy in rat models of temporal lobe epilepsy. Annals of Neurology, 2016, 80, 896-908.	2.8	56
96	Intercellular transfer of P-glycoprotein in human blood-brain barrier endothelial cells is increased by histone deacetylase inhibitors. Scientific Reports, 2016, 6, 29253.	1.6	17
97	Re-emergence of neuroinfectiology. Acta Neuropathologica, 2016, 131, 155-158.	3.9	4
98	Advances in the development of biomarkers for epilepsy. Lancet Neurology, The, 2016, 15, 843-856.	4.9	283
99	Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology, 2016, 109, 183-195.	2.0	46
100	Refinement of a model of acquired epilepsy for identification and validation of biomarkers of epileptogenesis in rats. Epilepsy and Behavior, 2016, 61, 120-131.	0.9	8
101	The pilocarpine model of temporal lobe epilepsy: Marked intrastrain differences in female Sprague–Dawley rats and the effect of estrous cycle. Epilepsy and Behavior, 2016, 61, 141-152.	0.9	23
102	Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022780.	2.9	233
103	Continuous bilateral infusion of vigabatrin into the subthalamic nucleus: Effects on seizure threshold and GABA metabolism in two rat models. Neurobiology of Disease, 2016, 91, 194-208.	2.1	17
104	2015 ACVIM Small Animal Consensus Statement on Seizure Management in Dogs. Journal of Veterinary Internal Medicine, 2016, 30, 477-490.	0.6	85
105	Significant effects of sex, strain, and anesthesia in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Epilepsy and Behavior, 2016, 55, 47-56.	0.9	68
106	Single dose efficacy evaluation of two partial benzodiazepine receptor agonists in photosensitive epilepsy patients: A placebo-controlled pilot study. Epilepsy Research, 2016, 122, 30-36.	0.8	19
107	Infections, inflammation and epilepsy. Acta Neuropathologica, 2016, 131, 211-234.	3.9	348
108	Structure–activity relationships of bumetanide derivatives: correlation between diuretic activity in dogs and inhibition of the human <scp>NKCC</scp> 2 <scp>A</scp> transporter. British Journal of Pharmacology, 2015, 172, 4469-4480.	2.7	14

#	Article	IF	CITATIONS
109	Efficacy, safety, and tolerability of imepitoin in dogs with newly diagnosed epilepsy in a randomized controlled clinical study with long-term follow up. BMC Veterinary Research, 2015, 11, 228.	0.7	27
110	Antiepileptic Drug Withdrawal in Dogs with Epilepsy. Frontiers in Veterinary Science, 2015, 2, 23.	0.9	10
111	Effective termination of status epilepticus by rational polypharmacy in the lithium–pilocarpine model in rats: Window of opportunity to prevent epilepsy and prediction of epilepsy by biomarkers. Neurobiology of Disease, 2015, 75, 78-90.	2.1	66
112	The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2). Neuropharmacology, 2015, 93, 7-14.	2.0	68
113	Factors Governing P-Glycoprotein-Mediated Drug–Drug Interactions at the Blood–Brain Barrier Measured with Positron Emission Tomography. Molecular Pharmaceutics, 2015, 12, 3214-3225.	2.3	39
114	The AMPA receptor antagonist NBQX exerts anti-seizure but not antiepileptogenic effects in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Neuropharmacology, 2015, 95, 234-242.	2.0	57
115	Single versus combinatorial therapies in status epilepticus: Novel data from preclinical models. Epilepsy and Behavior, 2015, 49, 20-25.	0.9	49
116	Pilocarpine-Induced Convulsive Activity Is Limited by Multidrug Transporters at the Rodent Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 351-359.	1.3	13
117	The enigma of the latent period in the development of symptomatic acquired epilepsy — Traditional view versus new concepts. Epilepsy and Behavior, 2015, 52, 78-92.	0.9	67
118	International Veterinary Epilepsy Task Force consensus proposal: medical treatment of canine epilepsy in Europe. BMC Veterinary Research, 2015, 11, 176.	0.7	115
119	Clinical efficacy and safety of imepitoin in comparison with phenobarbital for the control of idiopathic epilepsy in dogs. Journal of Veterinary Pharmacology and Therapeutics, 2015, 38, 160-168.	0.6	51
120	International veterinary epilepsy task force consensus proposal: outcome of therapeutic interventions in canine and feline epilepsy. BMC Veterinary Research, 2015, 11, 177.	0.7	61
121	Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. Journal of Experimental Medicine, 2015, 212, 1529-1549.	4.2	65
122	Novel combinations of phenotypic biomarkers predict development of epilepsy in the lithium–pilocarpine model of temporal lobe epilepsy in rats. Epilepsy and Behavior, 2015, 53, 98-107.	0.9	25
123	Network pharmacology for antiepileptogenesis: Tolerability of multitargeted drug combinations in nonepileptic vs. post-status epilepticus mice. Epilepsy Research, 2015, 118, 34-48.	0.8	29
124	Inter-individual variation in the effect of antiepileptic drugs in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology, 2015, 90, 53-62.	2.0	87
125	The organic anion transport inhibitor probenecid increases brain concentrations of the NKCC1 inhibitor bumetanide. European Journal of Pharmacology, 2015, 746, 167-173.	1.7	48
126	Bumetanide is not capable of terminating status epilepticus but enhances phenobarbital efficacy in different rat models. European Journal of Pharmacology, 2015, 746, 78-88.	1.7	15

#	Article	IF	CITATIONS
127	Sucrose consumption test reveals pharmacoresistant depression-associated behavior in two mouse models of temporal lobe epilepsy. Experimental Neurology, 2015, 263, 263-271.	2.0	52
128	Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. Journal of Cell Biology, 2015, 210, 21060IA179.	2.3	0
129	Drug-Induced Trafficking of P-Glycoprotein in Human Brain Capillary Endothelial Cells as Demonstrated by Exposure to Mitomycin C. PLoS ONE, 2014, 9, e88154.	1.1	34
130	Low doses of ethanol markedly potentiate the anti-seizure effect of diazepam in a mouse model of difficult-to-treat focal seizures. Epilepsy Research, 2014, 108, 1719-1727.	0.8	12
131	A novel prodrugâ€based strategy to increase effects of bumetanide in epilepsy. Annals of Neurology, 2014, 75, 550-562.	2.8	96
132	A new method to model electroconvulsive therapy in rats with increased construct validity and enhanced translational value. Journal of Psychiatric Research, 2014, 53, 94-98.	1.5	8
133	The Pharmacology of Imepitoin: The First Partial Benzodiazepine Receptor Agonist Developed for the Treatment of Epilepsy. CNS Drugs, 2014, 28, 29-43.	2.7	61
134	Searching for the Ideal Antiepileptogenic Agent in Experimental Models: Single Treatment Versus Combinatorial Treatment Strategies. Neurotherapeutics, 2014, 11, 373-384.	2.1	74
135	Marked Differences in the Effect of Antiepileptic and Cytostatic Drugs on the Functionality of P-Glycoprotein in Human and Rat Brain Capillary Endothelial Cell Lines. Pharmaceutical Research, 2014, 31, 1588-1604.	1.7	21
136	Consequences of inhibition of bumetanide metabolism in rodents on brain penetration and effects of bumetanide in chronic models of epilepsy. European Journal of Neuroscience, 2014, 39, 673-687.	1.2	49
137	What New Modeling Approaches Will Help Us Identify Promising Drug Treatments?. Advances in Experimental Medicine and Biology, 2014, 813, 283-294.	0.8	26
138	Prolonged depth electrode implantation in the limbic system increases the severity of status epilepticus in rats. Epilepsy Research, 2014, 108, 802-805.	0.8	10
139	Antiepileptic efficacy of lamotrigine in phenobarbital-resistant and -responsive epileptic rats: A pilot study. Epilepsy Research, 2014, 108, 1145-1157.	0.8	39
140	Anticonvulsant Effects by Bilateral and Unilateral Transplantation of GABA-Producing Cells into the Subthalamic Nucleus in an Acute Seizure Model. Cell Transplantation, 2014, 23, 111-132.	1.2	16
141	Issues related to development of antiepileptogenic therapies. Epilepsia, 2013, 54, 35-43.	2.6	86
142	Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiology of Disease, 2013, 59, 183-193.	2.1	154
143	(R)-[11C]verapamil is selectively transported by murine and human P-glycoprotein at the blood–brain barrier, and not by MRP1 and BCRP. Nuclear Medicine and Biology, 2013, 40, 873-878.	0.3	67
144	The novel antiepileptic drug imepitoin compares favourably to other GABA-mimetic drugs in a seizure threshold model in mice and dogs. Pharmacological Research, 2013, 77, 39-46.	3.1	27

108

#	Article	IF	CITATIONS
145	Pilocarpine-induced epilepsy in mice alters seizure thresholds and the efficacy of antiepileptic drugs in the 6-Hertz psychomotor seizure model. Epilepsy Research, 2013, 107, 205-216.	0.8	39
146	Is switching from brand name to generic formulations of phenobarbital associated with loss of antiepileptic efficacy?: a pharmacokinetic study with two oral formulations (Luminal® vet,) Tj ETQq0 0 0 rgBT /C)verhock 1(0 T&F 50 697 T
147	New avenues for anti-epileptic drug discovery and development. Nature Reviews Drug Discovery, 2013, 12, 757-776.	21.5	506
148	Tariquidar and Elacridar Are Dose-Dependently Transported by P-Glycoprotein and Bcrp at the Blood-Brain Barrier: A Small-Animal Positron Emission Tomography and In Vitro Study. Drug Metabolism and Disposition, 2013, 41, 754-762.	1.7	79
149	Assessment of cerebral P-glycoprotein expression and function with PET by combined [11C]inhibitor and [11C]substrate scans in rats. Nuclear Medicine and Biology, 2013, 40, 755-763.	0.3	15
150	Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology, 2013, 69, 62-74.	2.0	232
151	Epilepsy after head injury in dogs: A natural model of posttraumatic epilepsy. Epilepsia, 2013, 54, 580-588.	2.6	59
152	The intrahippocampal kainate model of temporal lobe epilepsy revisited: Epileptogenesis, behavioral and cognitive alterations, pharmacological response, and hippoccampal damage in epileptic rats. Epilepsy Research, 2013, 103, 135-152.	0.8	80
153	A Novel PET Protocol for Visualization of Breast Cancer Resistance Protein Function at the Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 2002-2011.	2.4	46
154	Finding a better drug for epilepsy: Antiepileptogenesis targets. Epilepsia, 2012, 53, 1868-1876.	2.6	82
155	Striking differences in proconvulsant-induced alterations of seizure threshold in two rat models. NeuroToxicology, 2012, 33, 127-137.	1.4	26
156	Generation and characterization of pilocarpine-sensitive C57BL/6 mice as a model of temporal lobe epilepsy. Behavioural Brain Research, 2012, 230, 182-191.	1.2	38
157	How theories evolved concerning the mechanism of action of barbiturates. Epilepsia, 2012, 53, 12-25.	2.6	146
158	Finding a better drug for epilepsy: Preclinical screening strategies and experimental trial design. Epilepsia, 2012, 53, 1860-1867.	2.6	69
159	Seizing the moment for the future: The U.S. Anticonvulsant Screening Project. Epilepsia, 2012, 53, 1841-1842	2.6	3

160	Effects of 50 Hz magnetic field exposure on the stress marker α-amylase in the rat mammary gland. International Journal of Radiation Biology, 2012, 88, 556-564.	1.0	2
161	Gene expression in the mammary gland tissue of female Fischer 344 and Lewis rats after magnetic field exposure (50 Hz, 100 μT) for 2 weeks. International Journal of Radiation Biology, 2012, 88, 425-429.	1.0	5

162Pgp-Mediated Interaction Between (R)-[11C]Verapamil and Tariquidar at the Human Bloodâ€"Brain
Barrier: A Comparison With Rat Data. Clinical Pharmacology and Therapeutics, 2012, 91, 227-233.2.3

#	Article	IF	CITATIONS
163	Perampanel—new promise for refractory epilepsy?. Nature Reviews Neurology, 2012, 8, 661-662.	4.9	50
164	Inter-individual variation in the anticonvulsant effect of phenobarbital in the pilocarpine rat model of temporal lobe epilepsy. Experimental Neurology, 2012, 234, 70-84.	2.0	36
165	The antiepileptic drug mephobarbital is not transported by P-glycoprotein or multidrug resistance protein 1 at the blood–brain barrier: A positron emission tomography study. Epilepsy Research, 2012, 100, 93-103.	0.8	12
166	Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia, 2012, 53, 571-582.	2.6	219
167	Vigabatrin for focal drug delivery in epilepsy: Bilateral microinfusion into the subthalamic nucleus is more effective than intranigral or systemic administration in a rat seizure model. Neurobiology of Disease, 2012, 46, 362-376.	2.1	21
168	Do proconvulsants modify or halt epileptogenesis? Pentylenetetrazole is ineffective in two rat models of temporal lobe epilepsy. European Journal of Neuroscience, 2012, 36, 2505-2520.	1.2	32
169	A comparative small-animal PET evaluation of [11C]tariquidar, [11C]elacridar and (R)-[11C]verapamil for detection of P-glycoprotein-expressing murine breast cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 149-159.	3.3	23
170	Enhanced susceptibility to the GABA antagonist pentylenetetrazole during the latent period following a pilocarpine-induced status epilepticus in rats. Neuropharmacology, 2011, 60, 505-512.	2.0	60
171	Therapeutic window of opportunity for the neuroprotective effect of valproate versus the competitive AMPA receptor antagonist NS1209 following status epilepticus in rats. Neuropharmacology, 2011, 61, 1033-1047.	2.0	36
172	Impact of seizure activity on free extracellular phenytoin concentrations in amygdala-kindled rats. Neuropharmacology, 2011, 61, 909-917.	2.0	14
173	Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure: the Journal of the British Epilepsy Association, 2011, 20, 359-368.	0.9	749
174	Modern antiepileptic drug development has failed to deliver: Ways out of the current dilemma. Epilepsia, 2011, 52, 657-678.	2.6	472
175	Salivary α-amylase exhibits antiproliferative effects in primary cell cultures of rat mammary epithelial cells and human breast cancer cells. Journal of Experimental and Clinical Cancer Research, 2011, 30, 102.	3.5	6
176	Marked strain and substrain differences in induction of status epilepticus and subsequent development of neurodegeneration, epilepsy, and behavioral alterations in rats. Epilepsy Research, 2011, 96, 207-224.	0.8	52
177	Radiosynthesis and in vivo evaluation of 1-[18F]fluoroelacridar as a positron emission tomography tracer for P-glycoprotein and breast cancer resistance protein. Bioorganic and Medicinal Chemistry, 2011, 19, 2190-2198.	1.4	30
178	Do ATP-Binding Cassette Transporters Cause Pharmacoresistance in Epilepsy? Problems and Approaches in Determining which Antiepileptic Drugs are Affected. Current Pharmaceutical Design, 2011, 17, 2808-2828.	0.9	132
179	The Anticonvulsant Response to Valproate in Kindled Rats Is Correlated with Its Effect on Neuronal Firing in the Substantia Nigra Pars Reticulata: A New Mechanism of Pharmacoresistance. Journal of Neuroscience, 2011, 31, 16423-16434.	1.7	39
180	A Novel Positron Emission Tomography Imaging Protocol Identifies Seizure-Induced Regional Overactivity of P-Glycoprotein at the Blood-Brain Barrier. Journal of Neuroscience, 2011, 31, 8803-8811.	1.7	58

WOLFGANG LöSCHER

#	Article	IF	CITATIONS
181	Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology, 2011, 77, 904-910.	1.5	99
182	Prevention or Modification of Epileptogenesis after Brain Insults: Experimental Approaches and Translational Research. Pharmacological Reviews, 2010, 62, 668-700.	7.1	343
183	Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[11C]verapamil PET. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 942-953.	3.3	102
184	Abnormal circling behavior in rat mutants and its relevance to model specific brain dysfunctions. Neuroscience and Biobehavioral Reviews, 2010, 34, 31-49.	2.9	32
185	Exposure to antiepileptic drugs does not alter the functionality of P-glycoprotein in brain capillary endothelial and kidney cell lines. European Journal of Pharmacology, 2010, 628, 57-66.	1.7	33
186	Brivaracetam does not alter spatial learning and memory in both normal and amygdala-kindled rats. Epilepsy Research, 2010, 91, 74-83.	0.8	22
187	Synthesis and in vivo evaluation of [11C]tariquidar, a positron emission tomography radiotracer based on a third-generation P-glycoprotein inhibitor. Bioorganic and Medicinal Chemistry, 2010, 18, 5489-5497.	1.4	73
188	High seizure frequency prior to antiepileptic treatment is a predictor of pharmacoresistant epilepsy in a rat model of temporal lobe epilepsy. Epilepsia, 2010, 51, 89-97.	2.6	51
189	Strategies for antiepileptogenesis: Antiepileptic drugs versus target-specific approaches. Epilepsia, 2010, 51, 88-88.	2.6	7
190	Differences in the expression of endogenous efflux transporters in <i>MDR1</i> â€ŧransfected versus wildtype cell lines affect Pâ€glycoprotein mediated drug transport. British Journal of Pharmacology, 2010, 160, 1453-1463.	2.7	90
191	Assessment of Regional Differences in Tariquidar-Induced P-Glycoprotein Modulation at the Human Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 510-515.	2.4	34
192	Disease-Modifying Effects of Phenobarbital and the NKCC1 Inhibitor Bumetanide in the Pilocarpine Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2010, 30, 8602-8612.	1.7	159
193	Imaging of P-glycoprotein Function and Expression to Elucidate Mechanisms of Pharmacoresistance in Epilepsy. Current Topics in Medicinal Chemistry, 2010, 10, 1785-1791.	1.0	40
194	Assessing cerebral P-glycoprotein expression and function with PET by combined [11C]inhibitor [11C]substrate scans. NeuroImage, 2010, 52, S116.	2.1	0
195	Evaluation of [11C]elacridar and [11C]tariquidar in transporter knockout mice using small-animal PET. NeuroImage, 2010, 52, S25.	2.1	3
196	Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overexpressed in pharmacoresistant epilepsy. Neuropharmacology, 2010, 58, 1019-1032.	2.0	91
197	The circling ci2 rat mutant revisited: receptor architecture of the motor cortex. Neuroscience, 2010, 170, 542-550.	1.1	6
	Synthesis and in vivo evaluation of the nutative breast cancer resistance protein inhibitor [110]methyl		

Synthesis and in vivo evaluation of the putative breast cancer resistance protein inhibitor [11C]methyl
4-((4-(2-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl)phenyl)amino-carbonyl)-2-(quinoline-2-carbonylaminoc)benzoatte.
Nuclear Medicine and Biology, 2010, 37, 637-644.

#	Article	IF	CITATIONS
199	Functional, metabolic, and synaptic changes after seizures as potential targets for antiepileptic therapy. Epilepsy and Behavior, 2010, 19, 105-113.	0.9	59
200	The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Experimental Neurology, 2010, 224, 219-233.	2.0	131
201	Rat Mutants with Lateralized Rotational Behavior for Studying Disturbances in Cerebral Asymmetries and Their Involvement in Brain Disorders. Neuromethods, 2010, , 33-64.	0.2	Ο
202	Neurodegeneration und -regeneration bei ZNS-Erkrankungen des Hundes. E-Neuroforum, 2009, 15, 96-98.	0.2	0
203	PHARMACORESISTANCE Animal Models of Drug-Resistant Epilepsy. , 2009, , 1123-1128.		1
204	<i>MDR1/ABCB1</i> polymorphisms and multidrug resistance in epilepsy: in and out of fashion. Pharmacogenomics, 2009, 10, 711-713.	0.6	22
205	A Pilot Study to Assess the Efficacy of Tariquidar to Inhibit P-glycoprotein at the Human Blood–Brain Barrier with (<i>R</i>)- ¹¹ C-Verapamil and PET. Journal of Nuclear Medicine, 2009, 50, 1954-1961.	2.8	99
206	Preclinical assessment of proconvulsant drug activity and its relevance for predicting adverse events in humans. European Journal of Pharmacology, 2009, 610, 1-11.	1.7	112
207	Profile of the new pyrrolidone derivative seletracetam (ucb 44212) in animal models of epilepsy. European Journal of Pharmacology, 2009, 614, 30-37.	1.7	24
208	Pilocarpine vs. lithium–pilocarpine for induction of status epilepticus in mice: Development of spontaneous seizures, behavioral alterations and neuronal damage. European Journal of Pharmacology, 2009, 619, 15-24.	1.7	75
209	Commentary: Physical Approaches for the Treatment of Epilepsy: Electrical and Magnetic Stimulation and Cooling. Neurotherapeutics, 2009, 6, 258-262.	2.1	7
210	The Antiepileptic Drug Topiramate is a Substrate for Human P-glycoprotein but Not Multidrug Resistance Proteins. Pharmaceutical Research, 2009, 26, 2464-2470.	1.7	44
211	Differences in sensitivity to the convulsant pilocarpine in substrains and sublines of C57BL/6 mice. Genes, Brain and Behavior, 2009, 8, 481-492.	1.1	78
212	New Developments in Antiepileptic Drug Resistance: An Integrative View. Epilepsy Currents, 2009, 9, 47-52.	0.4	94
213	The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia, 2009, 50, 1-23.	2.6	226
214	Retarded kindling progression in mice deficient in the extracellular matrix glycoprotein tenascinâ€R. Epilepsia, 2009, 50, 859-869.	2.6	22
215	Complex timeâ€dependent alterations in the brain expression of different drug efflux transporter genes after status epilepticus. Epilepsia, 2009, 50, 887-897.	2.6	37
216	Molecular mechanisms of drug resistance in status epilepticus. Epilepsia, 2009, 50, 19-21.	2.6	31

#	Article	IF	CITATIONS
217	Synthesis and Small-Animal Positron Emission Tomography Evaluation of [11C]-Elacridar As a Radiotracer to Assess the Distribution of P-Glycoprotein at the Bloodâ°'Brain Barrier. Journal of Medicinal Chemistry, 2009, 52, 6073-6082.	2.9	71
218	Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Experimental Neurology, 2009, 219, 284-297.	2.0	145
219	PHARMACORESISTANCE Brain Imaging of P-glycoprotein Function in Drug-Resistant Epilepsy. , 2009, , 1129-1133.		0
220	Increase in antiepileptic efficacy during prolonged treatment with valproic acid: Role of inhibition of histone deacetylases?. Epilepsy Research, 2008, 81, 107-113.	0.8	44
221	Resistance to antiepileptic drugs and expression of P-glycoprotein in two rat models of status epilepticus. Epilepsy Research, 2008, 82, 70-85.	0.8	104
222	Predictors of pharmacoresistant epilepsy: Pharmacoresistant rats differ from pharmacoresponsive rats in behavioral and cognitive abnormalities associated with experimentally induced epilepsy. Epilepsia, 2008, 49, 1759-1776.	2.6	33
223	Antiepileptic drug resistant rats differ from drug responsive rats in GABAA receptor subunit expression in a model of temporal lobe epilepsy. Neurobiology of Disease, 2008, 31, 169-187.	2.1	104
224	Benefits and risks of intranigral transplantation of GABA-producing cells subsequent to the establishment of kindling-induced seizures. Neurobiology of Disease, 2008, 31, 342-354.	2.1	32
225	Glutamate is critically involved in seizure-induced overexpression of P-glycoprotein in the brain. Neuropharmacology, 2008, 54, 1006-1016.	2.0	70
226	Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology, 2008, 55, 1364-1375.	2.0	271
227	Comparative analysis of anxiety-like behaviors and sensorimotor functions in two rat mutants, ci2 and ci3, with lateralized rotational behavior. Physiology and Behavior, 2008, 93, 417-426.	1.0	15
228	Cell and gene therapies in epilepsy – promising avenues or blind alleys?. Trends in Neurosciences, 2008, 31, 62-73.	4.2	75
229	Epileptic seizures and hippocampal damage after cuprizone-induced demyelination in C57BL/6 mice. Experimental Neurology, 2008, 210, 308-321.	2.0	94
230	Receptor fingerprinting the circling ci2 rat mutant: Insights into brain asymmetry and motor control. Experimental Neurology, 2008, 210, 624-637.	2.0	9
231	Behavioral alterations in a mouse model of temporal lobe epilepsy induced by intrahippocampal injection of kainate. Experimental Neurology, 2008, 213, 71-83.	2.0	129
232	Tariquidar-Induced P-Glycoprotein Inhibition at the Rat Blood–Brain Barrier Studied with (<i>R</i>)- ¹¹ C-Verapamil and PET. Journal of Nuclear Medicine, 2008, 49, 1328-1335.	2.8	104
233	Animal Models of Drug-Resistant Epilepsy. Novartis Foundation Symposium, 2008, , 149-166.	1.2	52
234	Valproic Acid Is Not a Substrate for P-glycoprotein or Multidrug Resistance Proteins 1 and 2 in a Number of in Vitro and in Vivo Transport Assays. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 331-343.	1.3	155

#	Article	IF	CITATIONS
235	Exposure of Fischer 344 rats to a weak power frequency magnetic field facilitates mammary tumorigenesis in the DMBA model of breast cancer. Carcinogenesis, 2007, 29, 186-193.	1.3	10
236	Comparative analysis of anxiety-like behaviors and sensorimotor functions in two rat mutants, ci2 and ci3, with lateralized rotational behavior. Physiology and Behavior, 2007, 91, 551-560.	1.0	10
237	Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology, 2007, 52, 333-346.	2.0	218
238	Prophylactic treatment with levetiracetam after status epilepticus: Lack of effect on epileptogenesis, neuronal damage, and behavioral alterations in rats. Neuropharmacology, 2007, 53, 207-221.	2.0	71
239	Alterations in dopamine D3 receptors in the circling (ci3) rat mutant. Neuroscience, 2007, 144, 1462-1469.	1.1	8
240	Marked differences in response to dopamine receptor antagonism in two rat mutants, ci2 and ci3, with lateralized rotational behavior. Behavioural Brain Research, 2007, 180, 218-225.	1.2	18
241	Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Experimental Neurology, 2007, 207, 329-349.	2.0	179
242	The Blood-Brain Barrier and Cancer: Transporters, Treatment, and Trojan Horses. Clinical Cancer Research, 2007, 13, 1663-1674.	3.2	601
243	Upregulation of Brain Expression of P-Glycoprotein in MRP2-deficient TR-Rats Resembles Seizure-induced Up-regulation of This Drug Efflux Transporter in Normal Rats. Epilepsia, 2007, 48, 631-645.	2.6	37
244	Resistance to Phenobarbital Extends to Phenytoin in a Rat Model of Temporal Lobe Epilepsy. Epilepsia, 2007, 48, 816-826.	2.6	47
245	Drug Transporters in the Epileptic Brain. Epilepsia, 2007, 48, 8-13.	2.6	74
246	The Pharmacokinetics of Antiepileptic Drugs in Rats: Consequences for Maintaining Effective Drug Levels during Prolonged Drug Administration in Rat Models of Epilepsy. Epilepsia, 2007, 48, 1245-1258.	2.6	116
247	Drug resistance in epilepsy: Why is a simple explanation not enough?. Epilepsia, 2007, 48, 2370-2372.	2.6	36
248	Mechanisms of drug resistance in status epilepticus. Epilepsia, 2007, 48, 74-77.	2.6	72
249	Auditory and vestibular defects and behavioral alterations after neonatal administration of streptomycin to Lewis rats: Similarities and differences to the circling (ci2/ci2) Lewis rat mutant. Brain Research, 2007, 1155, 179-195.	1.1	26
250	Efflux Transporters in the Brain. , 2007, , 461-483.		0
251	mGlu1 and mGlu5 receptor antagonists lack anticonvulsant efficacy in rodent models of difficult-to-treat partial epilepsy. Neuropharmacology, 2006, 50, 1006-1015.	2.0	27
252	Treatment with valproate after status epilepticus: Effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology, 2006, 51, 789-804.	2.0	140

#	Article	IF	CITATIONS
253	Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus. Neuroscience, 2006, 141, 2177-2194.	1.1	45
254	Neurogenesis in the adult rat piriform cortex. NeuroReport, 2006, 17, 571-574.	0.6	79
255	Comparison of Brain Extracellular Fluid, Brain Tissue, Cerebrospinal Fluid, and Serum Concentrations of Antiepileptic Drugs Measured Intraoperatively in Patients with Intractable Epilepsy. Epilepsia, 2006, 47, 681-694.	2.6	151
256	Anticonvulsant Effects of Transcranial Direct-current Stimulation (tDCS) in the Rat Cortical Ramp Model of Focal Epilepsy. Epilepsia, 2006, 47, 1216-1224.	2.6	194
257	Experimental and Clinical Evidence for Loss of Effect (Tolerance) during Prolonged Treatment with Antiepileptic Drugs. Epilepsia, 2006, 47, 1253-1284.	2.6	206
258	Effects of the Novel Antiepileptic Drug Lacosamide on the Development of Amygdala Kindling in Rats. Epilepsia, 2006, 47, 1803-1809.	2.6	65
259	Epileptogenesis and rational therapeutic strategies. Acta Neurologica Scandinavica, 2006, 113, 139-155.	1.0	44
260	Expression of the multidrug transporter MRP2 in the blood–brain barrier after pilocarpine-induced seizures in rats. Epilepsy Research, 2006, 69, 1-14.	0.8	55
261	Polymorphic variants of the multidrug resistance gene Mdr1a and response to antiepileptic drug treatment in the kindling model of epilepsy. European Journal of Pharmacology, 2006, 550, 54-61.	1.7	7
262	Distribution of GABAergic neurons in the striatum of amygdala-kindled rats: An immunohistochemical and in situ hybridization study. Brain Research, 2006, 1083, 50-60.	1.1	13
263	Antiepileptic drug-resistant rats differ from drug-responsive rats in hippocampal neurodegeneration and CABAA receptor ligand binding in a model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 21, 633-646.	2.1	58
264	Pedunculopontine neurons are involved in network changes in the kindling model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 23, 206-218.	2.1	13
265	The multidrug transporter hypothesis of drug resistance in epilepsy: Proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 24, 202-211.	2.1	201
266	Animal Models of Drug-Refractory Epilepsy. , 2006, , 551-567.		15
267	Antiepileptika. , 2006, , 103-176.		0
268	Major targets and mechanisms of antiepileptic drugs and major reasons for failure. Advances in Neurology, 2006, 97, 417-27.	0.8	7
269	How to Explain Multidrug Resistance in Epilepsy?. Epilepsy Currents, 2005, 5, 107-112.	0.4	53
270	Drug Resistance in Epilepsy: Putative Neurobiologic and Clinical Mechanisms. Epilepsia, 2005, 46, 858-877.	2.6	423

#	Article	IF	CITATIONS
271	Drug resistance in brain diseases and the role of drug efflux transporters. Nature Reviews Neuroscience, 2005, 6, 591-602.	4.9	804
272	Uncontrolled epilepsy following discontinuation of antiepileptic drugs in seizure-free patients: a review of current clinical experience. Acta Neurologica Scandinavica, 2005, 111, 291-300.	1.0	94
273	Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain, 2005, 128, 1358-1368.	3.7	162
274	Mechanisms of Pharmacoresistance in the Phenytoin-Resistant Kindled Wistar Rat. , 2005, , 315-323.		1
275	Immunohistochemical Localization of P-glycoprotein in Rat Brain and Detection of Its Increased Expression by Seizures Are Sensitive to Fixation and Staining Variables. Journal of Histochemistry and Cytochemistry, 2005, 53, 517-531.	1.3	106
276	Power Frequency Magnetic Fields Increase Cell Proliferation in the Mammary Gland of Female Fischer 344 Rats but Not Various Other Rat Strains or Substrains. Oncology, 2005, 69, 486-498.	0.9	14
277	Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Progress in Neurobiology, 2005, 76, 22-76.	2.8	544
278	Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx, 2005, 2, 86-98.	6.0	715
279	Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. Neurotherapeutics, 2005, 2, 86-98.	2.1	4
280	Mechanisms of drug resistance. Epileptic Disorders, 2005, 7 Suppl 1, S3-9.	0.7	8
281	Das Zentrum Für Systemische Neurowissenschaften (Zsn) In Hannover. E-Neuroforum, 2004, 10, 278-279.	0.2	0
282	Significant Differences in the Effects of Magnetic Field Exposure on 7,12-Dimethylbenz(a)anthracene-Induced Mammary Carcinogenesis in Two Substrains of Sprague-Dawley Rats. Cancer Research, 2004, 64, 243-251.	0.4	54
283	Subregional changes in discharge rate, pattern, and drug sensitivity of putative GABAergic nigral neurons in the kindling model of epilepsy. European Journal of Neuroscience, 2004, 20, 2377-2386.	1.2	37
284	The antiepileptic drug levetiracetam selectively modifies kindling-induced alterations in gene expression in the temporal lobe of rats. European Journal of Neuroscience, 2004, 19, 334-345.	1.2	48
285	Striking Differences in Individual Anticonvulsant Response to Phenobarbital in Rats with Spontaneous Seizures after Status Epilepticus. Epilepsia, 2004, 45, 1488-1497.	2.6	87
286	Anticonvulsant Efficacy of the Low-affinity Partial Benzodiazepine Receptor Agonist ELB 138 in a Dog Seizure Model and in Epileptic Dogs with Spontaneously Recurrent Seizures. Epilepsia, 2004, 45, 1228-1239.	2.6	56
287	Seizure Recurrence after Planned Discontinuation of Antiepileptic Drugs in Seizure-free Patients after Epilepsy Surgery: A Review of Current Clinical Experience. Epilepsia, 2004, 45, 179-186.	2.6	159
288	The neurobiology of antiepileptic drugs. Nature Reviews Neuroscience, 2004, 5, 553-564.	4.9	1,044

#	Article	IF	CITATIONS
289	Amygdala-kindling does not induce a persistent loss of GABA neurons in the substantia nigra pars reticulata of rats. Brain Research, 2004, 1025, 203-209.	1.1	14
290	Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats. Epilepsy Research, 2004, 58, 85-91.	0.8	89
291	Epilepsy induced by extended amygdala-kindling in rats: lack of clear association between development of spontaneous seizures and neuronal damage. Epilepsy Research, 2004, 62, 135-156.	0.8	102
292	Increased expression of the multidrug transporter P-glycoprotein in limbic brain regions after amygdala-kindled seizures in rats. Epilepsy Research, 2004, 58, 67-79.	0.8	83
293	The chance of cure following surgery for drug-resistant temporal lobe epilepsy. Epilepsy Research, 2004, 60, 187-201.	0.8	24
294	Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures. Neuroscience, 2004, 123, 751-759.	1.1	121
295	The central piriform cortex: anatomical connections and anticonvulsant effect of gaba elevation in the kindling model. Neuroscience, 2004, 126, 727-741.	1.1	53
296	Bilateral microinjections of vigabatrin in the central piriform cortex retard AMYGDALA kindling in rats. Neuroscience, 2004, 129, 425-429.	1.1	20
297	The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nature Medicine, 2004, 10, 685-692.	15.2	416
298	Pharmacoresistance and expression of multidrug transporter P-glycoprotein in kindled rats. NeuroReport, 2004, 15, 1657-1661.	0.6	67
299	The chance of cure following surgery for drug-resistant temporal lobe epilepsyWhat do we know and do we need to revise our expectations?. Epilepsy Research, 2004, 60, 187-201.	0.8	40
300	Ist Epilepsie eine progrediente Erkrankung?. Zeitschrift Fur Epileptologie, 2003, 16, 207-213.	0.2	0
301	Are neuronal nicotinic receptors a target for antiepileptic drug development? Studies in different seizure models in mice and rats. European Journal of Pharmacology, 2003, 466, 99-111.	1.7	36
302	How effective is surgery to cure seizures in drug-resistant temporal lobe epilepsy?. Epilepsy Research, 2003, 56, 85-91.	0.8	41
303	Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats. Epilepsy Research, 2003, 55, 83-103.	0.8	130
304	Brain Access and Anticonvulsant Efficacy of Carbamazepine, Lamotrigine, and Felbamate in ABCC2/MRP2-Deficient TR- Rats. Epilepsia, 2003, 44, 1479-1486.	2.6	65
305	Hydantoin-Substituted 4,6-Dichloroindole-2-carboxylic Acids as Ligands with High Affinity for the Glycine Binding Site of the NMDA Receptor§. Journal of Medicinal Chemistry, 2003, 46, 64-73.	2.9	49
306	Altered spontaneous discharge rate and pattern of basal ganglia output neurons in the circling (ci2) rat mutant. Neuroscience, 2003, 118, 867-878.	1.1	54

#	Article	IF	CITATIONS
307	N-methyl-d-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Neuroscience, 2003, 118, 727-740.	1.1	192
308	Functional Inactivation of a Fraction of Excitatory Synapses in Mice Deficient for the Active Zone Protein Bassoon. Neuron, 2003, 37, 787-800.	3.8	226
309	Multidrug Resistance Protein MRP2 Contributes to Blood-Brain Barrier Function and Restricts Antiepileptic Drug Activity. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 124-131.	1.3	221
310	Excessive weight gain in rats over extended kindling of the basolateral amygdala. NeuroReport, 2003, 14, 1829-1832.	0.6	24
311	A comparison of extracellular levels of phenytoin in amygdala and hippocampus of kindled and non-kindled rats. NeuroReport, 2002, 13, 167-171.	0.6	30
312	Genetically Engineered GABA-Producing Cells Demonstrate Anticonvulsant Effects and Long-Term Transgene Expression When Transplanted into the Central Piriform Cortex of Rats. Experimental Neurology, 2002, 176, 183-192.	2.0	84
313	Basic Pharmacology of Valproate. CNS Drugs, 2002, 16, 669-694.	2.7	556
314	Effect of phenytoin on sodium and calcium currents in hippocampal CA1 neurons of phenytoin-resistant kindled rats. Neuropharmacology, 2002, 42, 107-116.	2.0	51
315	Current status and future directions in the pharmacotherapy of epilepsy. Trends in Pharmacological Sciences, 2002, 23, 113-118.	4.0	186
316	P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood–brain barrier: evidence from microdialysis experiments in rats. Neuroscience Letters, 2002, 327, 173-176.	1.0	227
317	Role of Multidrug Transporters in Pharmacoresistance to Antiepileptic Drugs. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 7-14.	1.3	374
318	Lack of effects of prolonged treatment with phenobarbital or phenytoin on the expression of P-glycoprotein in various rat brain regions. European Journal of Pharmacology, 2002, 451, 149-155.	1.7	42
319	Effects of pharmacological manipulations of cannabinoid receptors on severity of dystonia in a genetic model of paroxysmal dyskinesia. European Journal of Pharmacology, 2002, 454, 145-151.	1.7	22
320	Models for Epilepsy and Epileptogenesis: Report from the NIH Workshop, Bethesda, Maryland. Epilepsia, 2002, 43, 1410-1420.	2.6	124
321	Effects of the Novel Antiepileptic Drug Levetiracetam on Spontaneous Recurrent Seizures in the Rat Pilocarpine Model of Temporal Lobe Epilepsy. Epilepsia, 2002, 43, 350-357.	2.6	148
322	Expression of the Multidrug Transporter P-glycoprotein in Brain Capillary Endothelial Cells and Brain Parenchyma of Amygdala-kindled Rats. Epilepsia, 2002, 43, 675-684.	2.6	67
323	Delayed Sclerosis, Neuroprotection, and Limbic Epileptogenesis After Status Epilepticus in the Rat. Epilepsia, 2002, 43, 86-95.	2.6	83
324	Kindling-induced overexpression ofHomer 1Aand its functional implications for epileptogenesis. European Journal of Neuroscience, 2002, 16, 2157-2165.	1.2	67

#	Article	IF	CITATIONS
325	Transient increase of P-glycoprotein expression in endothelium and parenchyma of limbic brain regions in the kainate model of temporal lobe epilepsy. Epilepsy Research, 2002, 51, 257-268.	0.8	103
326	New horizons in the development of antiepileptic drugs. Epilepsy Research, 2002, 50, 3-16.	0.8	112
327	Critical re-evaluation of previous preclinical strategies for the discovery and the development of new antiepileptic drugs. Epilepsy Research, 2002, 50, 17-20.	0.8	30
328	Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Research, 2002, 50, 105-123.	0.8	469
329	Animal Models of Limbic Epilepsies: What Can They Tell Us?. Brain Pathology, 2002, 12, 240-256.	2.1	100
330	Magnetic field exposure increases cell proliferation but does not affect melatonin levels in the mammary gland of female Sprague Dawley rats. Cancer Research, 2002, 62, 1356-63.	0.4	30
331	Animal models of drug-resistant epilepsy. Novartis Foundation Symposium, 2002, 243, 149-59; discussion 159-66, 180-5.	1.2	18
332	Spontaneous Paroxysmal Circling Behavior in the ci2 Rat Mutant: Epilepsy with Rotational Seizures or Hyperkinetic Movement Disorder?. Experimental Neurology, 2001, 172, 437-445.	2.0	21
333	A novel black-hooded mutant rat (ci3) with spontaneous circling behavior but normal auditory and vestibular functions. Neuroscience, 2001, 107, 615-628.	1.1	24
334	Evidence for microvesicular storage and release of glycine in rodent pinealocytes. Neuroscience Letters, 2001, 299, 93-96.	1.0	10
335	P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. NeuroReport, 2001, 12, 3557-3560.	0.6	197
336	Multidrug resistance-associated protein is involved in the regulation of extracellular levels of phenytoin in the brain. NeuroReport, 2001, 12, 2387-2389.	0.6	68
337	In Vivo Evidence for Pâ€Glycoprotein–Mediated Transport of Phenytoin at the Blood–Brain Barrier of Rats. Epilepsia, 2001, 42, 1231-1240.	2.6	188
338	AWD 140-190: A Potent Anticonvulsant in the Amygdala-Kindling Model of Partial Epilepsy. Epilepsia, 2001, 42, 590-599.	2.6	0
339	Auditory and vestibular defects in the circling (ci2) rat mutant. European Journal of Neuroscience, 2001, 14, 1129-1142.	1.2	50
340	Repeated low-dose treatment of rats with pilocarpine: low mortality but high proportion of rats developing epilepsy. Epilepsy Research, 2001, 46, 111-119.	0.8	171
341	Lack of robust anticonvulsant effects of muscimol microinfusions in the anterior substantia nigra of kindled rats. European Journal of Pharmacology, 2001, 432, 35-41.	1.7	34
342	Breast Cancer and Use of Electric Power: Experimental Studies on the Melatonin Hypothesis. , 2001, ,		4

342 518-533.

#	Article	IF	CITATIONS
343	Anticonvulsant efficacy of gabapentin and levetiracetam in phenytoin-resistant kindled rats. Epilepsy Research, 2000, 40, 63-77.	0.8	71
344	Effects of lesions of the perirhinal cortex on amygdala kindling in rats. Epilepsy Research, 2000, 42, 33-41.	0.8	8
345	The role of technical, biological, and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. VII. Seasonal influences on anticonvulsant drug actions in mouse models of generalized seizures. Epilepsy Research, 2000, 38, 231-248.	0.8	29
346	Anticonvulsant and proconvulsant effects of tramadol, its enantiomers and its M1 metabolite in the rat kindling model of epilepsy. British Journal of Pharmacology, 2000, 131, 203-212.	2.7	67
347	Antidystonic efficacy of nitric oxide synthase inhibitors in a rodent model of primary paroxysmal dystonia. British Journal of Pharmacology, 2000, 131, 921-926.	2.7	8
348	Kindling alters the anticonvulsant efficacy of phenytoin in Wistar rats. Epilepsy Research, 2000, 39, 211-220.	0.8	24
349	High susceptibility of the anterior and posterior piriform cortex to induction of convulsions by bicuculline. European Journal of Neuroscience, 2000, 12, 4195-4205.	1.2	8
350	Anticonvulsant Efficacy of Topiramate in Phenytoin-Resistant Kindled Rats. Epilepsia, 2000, 41, 372-379.	2.6	24
351	Repeated Acute Testing of Anticonvulsant Drugs in Amygdala Kindled Rats: Increase in Anticonvulsant But Decrease in Adverse Effect Potential. Epilepsia, 2000, 41, 516-528.	2.6	11
352	Development of Tolerance During Chronic Treatment of Kindled Rats With the Novel Antiepileptic Drug Levetiracetam. Epilepsia, 2000, 41, 1499-1506.	2.6	49
353	Development of kindling and spontaneous seizures after massed stimulation of different loci in the rat piriform cortex. Brain Research, 2000, 855, 252-259.	1.1	5
354	Paradoxical aggravation of paroxysmal dystonia during chronic treatment with phenobarbital in a genetic rodent model. European Journal of Pharmacology, 2000, 397, 343-350.	1.7	7
355	Effects of 50- or 60-hertz, 100 microT magnetic field exposure in the DMBA mammary cancer model in Sprague-Dawley rats: possible explanations for different results from two laboratories Environmental Health Perspectives, 2000, 108, 797-802.	2.8	12
356	Deficit of Striatal Parvalbumin-Reactive GABAergic Interneurons and Decreased Basal Ganglia Output in a Genetic Rodent Model of Idiopathic Paroxysmal Dystonia. Journal of Neuroscience, 2000, 20, 7052-7058.	1.7	141
357	A microdialysis study of striatal dopamine release in the circling rat, a genetic animal model with spontaneous lateralized rotational behavior. Neuroscience, 2000, 97, 69-77.	1.1	35
358	Kindling causes persistent in vivo changes in firing rates and glutamate sensitivity of central piriform cortex neurons in rats. Neuroscience, 2000, 99, 217-227.	1.1	23
359	Bilateral lesions of the central but not anterior or posterior parts of the piriform cortex retard amygdala kindling in rats. Neuroscience, 2000, 101, 513-521.	1.1	32
360	Strong olfactory stimulation reduces seizure susceptibility in amygdala-kindled rats. Neuroscience Letters, 2000, 287, 199-202.	1.0	34

#	Article	IF	CITATIONS
361	The new antiepileptic drugs lamotrigine and felbamate are effective in phenytoin-resistant kindled rats. Neuropharmacology, 2000, 39, 1893-1903.	2.0	28
362	Effects of 50- or 60-Hertz, 100 mT Magnetic Field Exposure in the DMBA Mammary Cancer Model in Sprague-Dawley Rats: Possible Explanations for Different Results from Two Laboratories. Environmental Health Perspectives, 2000, 108, 797.	2.8	8
363	High susceptibility of the anterior and posterior piriform cortex to induction of convulsions by bicuculline. European Journal of Neuroscience, 2000, 12, 4195-4205.	1.2	5
364	Pharmacological effects and mechanisms of action. , 1999, , 7-45.		5
365	Characterization of phenytoin-resistant kindled rats, a new model of drug-resistant partial epilepsy: influence of experimental and environmental factors. Epilepsy Research, 1999, 33, 199-215.	0.8	17
366	Characterization of phenytoin-resistant kindled rats, a new model of drug-resistant partial epilepsy: influence of genetic factors. Epilepsy Research, 1999, 33, 217-226.	0.8	39
367	Effect of depth electrode implantation with or without subsequent kindling on GABA turnover in various rat brain regions. Epilepsy Research, 1999, 37, 95-108.	0.8	22
368	Corneal kindling in mice: behavioral and pharmacological differences to conventional kindling. Epilepsy Research, 1999, 37, 109-120.	0.8	39
369	Changes in plasma GABA concentration during vigabatrin treatment of epilepsy: a prospective study. Epilepsy Research, 1999, 34, 145-150.	0.8	18
370	Alterations in spontaneous single unit activity of striatal subdivisions during ontogenesis in mutant dystonic hamsters. Brain Research, 1999, 821, 277-285.	1.1	51
371	Gabapentin decreases the severity of dystonia at low doses in a genetic animal model of paroxysmal dystonic choreoathetosis. European Journal of Pharmacology, 1999, 369, 335-338.	1.7	19
372	Effects of the NMDA receptor antagonist d-CPPene on extracellular levels of dopamine and dopamine and serotonin metabolites in striatum of kindled and non-kindled rats. European Journal of Pharmacology, 1999, 374, 175-187.	1.7	4
373	Subconvulsive dose of pentylenetetrazole increases the firing rate of substantia nigra pars reticulata neurons in dystonic but not in nondystonic hamsters. , 1999, 33, 259-267.		12
374	Extracellular single-unit recordings of piriform cortex neurons in rats: Influence of different types of anesthesia and characterization of neurons by pharmacological manipulation of serotonin receptors. , 1999, 55, 608-619.		12
375	In vivo extracellular electrophysiology of pallidal neurons in dystonic and nondystonic hamsters. Journal of Neuroscience Research, 1999, 57, 894-905.	1.3	24
376	Exposure of rats to a 50-Hz, 100 ?Tesla magnetic field does not affect the ex vivo production of interleukins by activated T or B lymphocytes. Bioelectromagnetics, 1999, 20, 295-305.	0.9	6
377	Alterations in ornithine decarboxylase activity in the rat mammary gland after different periods of 50 Hz magnetic field exposure. Bioelectromagnetics, 1999, 20, 338-346.	0.9	16
378	Animal Models of Epilepsy and Epileptic Seizures. Handbook of Experimental Pharmacology, 1999, , 19-62.	0.9	56

#	Article	IF	CITATIONS
379	Immunohistochemical and neurochemical studies on nigral and striatal functions in the circling (ci) rat, a genetic animal model with spontaneous rotational behavior. Neuroscience, 1999, 89, 461-471.	1.1	48
380	Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Progress in Neurobiology, 1999, 58, 31-59.	2.8	468
381	Anticonvulsant effects of eliprodil alone or combined with the glycineB receptor antagonist L-701,324 or the competitive NMDA antagonist CGP 40116 in the amygdala kindling model in rats. Neuropharmacology, 1999, 38, 243-251.	2.0	13
382	The discovery of valproate. , 1999, , 1-3.		10
383	Exposure of Sprague-Dawley rats to a 50-Hertz, 100-microTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7,12-dimethylbenz[a]-anthracene model of breast cancer. Cancer Research, 1999, 59, 3627-33.	0.4	43
384	Characterization of Phenytoin-Resistant Kindled Rats, a New Model of Drug-Resistant Partial Epilepsy: Comparison of Inbred Strains. Epilepsia, 1998, 39, 1046-1053.	2.6	30
385	Selection of Phenytoin Responders and Nonresponders in Male and Female Amygdala-Kindled Sprague-Dawley Rats. Epilepsia, 1998, 39, 1138-1147.	2.6	23
386	Comparison of Effects of Valproate and Trans-2-en-Valproate on Different Forms of Epileptiform Activity in Rat Hippocampal and Temporal Cortex Slices. Epilepsia, 1998, 39, 251-258.	2.6	24
387	LU 73068, a new non-NMDA and glycine/NMDA receptor antagonist: pharmacological characterization and comparison with NBQX and L-701,324 in the kindling model of epilepsy. British Journal of Pharmacology, 1998, 125, 1258-1266.	2.7	22
388	Regional and age specific effects of zolpidem microinfusions in the substantia nigra on seizures. Epilepsy Research, 1998, 30, 107-114.	0.8	32
389	Frontal versus transcorneal stimulation to induce maximal electroshock seizures or kindling in mice and rats. Epilepsy Research, 1998, 30, 219-229.	0.8	25
390	Differences in the distribution of GABA- and GAD-immunoreactive neurons in the anterior and posterior piriform cortex of rats. Brain Research, 1998, 800, 21-31.	1.1	32
391	Effect of low-intensity 50-Hz magnetic fields on kindling acquisition and fully kindled seizures in rats. Brain Research, 1998, 809, 269-276.	1.1	18
392	Electrical but not chemical kindling increases sensitivity to some phencyclidine-like behavioral effects induced by the competitive NMDA receptor antagonist d-CPPene in rats. European Journal of Pharmacology, 1998, 353, 177-189.	1.7	12
393	Seizure suppression in kindling epilepsy by grafts of fetal GABAergic neurons in rat substantia nigra. Journal of Neuroscience Research, 1998, 51, 196-209.	1.3	111
394	Complex effects of long-term 50 Hz magnetic field exposure in vivo on immune functions in female Sprague-Dawley rats depend on duration of exposure. Bioelectromagnetics, 1998, 19, 259-270.	0.9	29
395	Amygdala-kindling induces a lasting reduction of GABA-immunoreactive neurons in a discrete area of the ipsilateral piriform cortex. , 1998, 29, 299-309.		43
396	Quantitative EEG analysis of depth electrode recordings from several brain regions of mutant hamsters with paroxysmal dystonia discloses frequency changes in the basal ganglia. Movement Disorders, 1998, 13, 509-521.	2.2	26

#	Article	IF	CITATIONS
397	[3H]-2-Deoxyglucose uptake study in mutant dystonic hamsters: Abnormalities in discrete brain regions of the motor system. Movement Disorders, 1998, 13, 718-725.	2.2	34
398	Anticonvulsant effect of fosphenytoin in amygdala-kindled rats: Comparison with phenytoin. Epilepsy Research, 1998, 30, 69-76.	0.8	24
399	Limbic epileptogenesis alters the anticonvulsant efficacy of phenytoin in Sprague–Dawley rats. Epilepsy Research, 1998, 31, 175-186.	0.8	14
400	Pathophysiology of idiopathic dystonia: findings from genetic animal models. Progress in Neurobiology, 1998, 54, 633-677.	2.8	117
401	Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Progress in Neurobiology, 1998, 54, 721-741.	2.8	163
402	Focal ischemia enhances the adverse effect potential of N-methyl-d-aspartate receptor antagonists in rats. Neuroscience Letters, 1998, 240, 33-36.	1.0	20
403	Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields1This is the last in a series of four papers, the first of which was published in Mutation Res. 387 (1997) pp. 165–171.1. Mutation Research - Reviews in Mutation Research, 1998, 410, 185-220.	2.4	54
404	Anticonvulsant efficacy of l-deprenyl (selegiline) during chronic treatment in mice: continuous versus discontinuous administration. Neuropharmacology, 1998, 37, 1587-1593.	2.0	6
405	Differences in Kindling Development in Seven Outbred and Inbred Rat Strains. Experimental Neurology, 1998, 154, 551-559.	2.0	50
406	Weak anticonvulsant effects of two novel glycineB receptor antagonists in the amygdala-kindling model in rats. European Journal of Pharmacology, 1998, 342, 39-46.	1.7	13
407	New visions in the pharmacology of anticonvulsion. European Journal of Pharmacology, 1998, 342, 1-13.	1.7	214
408	Pharmacology of Glutamate Receptor Antagonists in the Kindling Model. Advances in Behavioral Biology, 1998, , 435-449.	0.2	1
409	Evaluation of Associated Behavioral and Cognitive Deficits in Anticonvulsant Drug Testing. , 1998, , .		2
410	Antiepileptogenic effects of the novel anticonvulsant levetiracetam (ucb L059) in the kindling model of temporal lobe epilepsy. Journal of Pharmacology and Experimental Therapeutics, 1998, 284, 474-9.	1.3	247
411	Anticonvulsant drug effects in the direct cortical ramp-stimulation model in rats: comparison with conventional seizure models. Journal of Pharmacology and Experimental Therapeutics, 1998, 285, 1137-49.	1.3	26
412	Prodystonic effects of riluzole in an animal model of idiopathic dystonia related to decreased total power in the red nucleus?. European Journal of Pharmacology, 1997, 332, 133-141.	1.7	9
413	Anticonvulsant effects by combined treatment with a glycineB receptor antagonist and a polyamine site antagonist in amygdala-kindled rats. European Journal of Pharmacology, 1997, 322, 179-184.	1.7	23
414	Animal models of intractable epilepsy. Progress in Neurobiology, 1997, 53, 239-258.	2.8	239

#	Article	IF	CITATIONS
415	Intravenous Carbamazepine: Comparison of Different Parenteral Formulations in a Mouse Model of Convulsive Status Epilepticus. Epilepsia, 1997, 38, 106-113.	2.6	33
416	Anticonvulsant Activity of Felbamate in Amygdala Kindling Model of Temporal Lobe Epilepsy in Rats. Epilepsia, 1997, 38, 1167-1172.	2.6	9
417	Alterations in N-methyl-d-aspartate receptor binding in dystonic hamster brains. Brain Research, 1997, 744, 161-165.	1.1	15
418	Dextrorphan, but not dextromethorphan, exerts weak antidystonic effects in mutant dystonic hamsters. Brain Research, 1997, 745, 336-338.	1.1	6
419	The electrical activity is impaired in the red nucleus of dtsz mutant hamsters with paroxysmal dystonia: an EEG power spectrum analysis of depth electrode recordings. Brain Research, 1997, 760, 102-108.	1.1	10
420	MK-801 potentiates antidystonic effects of clozapine but not of haloperidol in mutant dystonic hamsters. Brain Research, 1997, 769, 296-302.	1.1	10
421	Phenytoin's effect on the spread of seizure activity in the amygdala kindling model. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 341-347.	1.4	41
422	Trans-2-en-valproic acid limits action potential firing frequency in mouse central neurons in cell culture. Journal of Pharmacology and Experimental Therapeutics, 1997, 280, 1349-56.	1.3	6
423	Immunocytochemical localization of GABA immunoreactivity in dentate granule cells of normal and kindled rats. Neuroscience Letters, 1996, 212, 41-44.	1.0	61
424	Quantitative autoradiography reveals regionally selective changes in dopamine D1 and D2 receptor binding in the genetically dystonic hamster. Neuroscience, 1996, 71, 927-936.	1.1	56
425	Behavioural and neurochemical dysfunction in the circling (ci) rat: A novel genetic animal model of a movement disorder. Neuroscience, 1996, 74, 1135-1142.	1.1	42
426	Valproate and its major metabolite E-2-en-valproate induce different effects on behaviour and brain monoamine metabolism in rats. European Journal of Pharmacology, 1996, 299, 61-67.	1.7	19
427	Antidystonic effects of L-type Ca2+ channel antagonists in a hamster model of idiopathic dystonia. European Journal of Pharmacology, 1996, 300, 197-202.	1.7	8
428	The anticonvulsant gabapentin decreases firing rates of substantia nigra pars reticulata neurons. European Journal of Pharmacology, 1996, 316, 211-218.	1.7	21
429	THE ROLE OF THE PIRIFORM CORTEX IN KINDLING. Progress in Neurobiology, 1996, 50, 427-481.	2.8	271
430	Increased levels of kynurenic acid in brains of genetically dystonic hamsters. Developmental Brain Research, 1996, 92, 111-116.	2.1	14
431	Kindling induces a lasting, regionally selective increase of kynurenic acid in the nucleus accumbens. Brain Research, 1996, 725, 252-256.	1.1	18
432	Abnormal c-fos expression in the lateral habenula during dystonic attacks in a hamster model of idiopathic dystonia. Brain Research, 1996, 728, 125-129.	1.1	10

#	Article	IF	CITATIONS
433	The novel antiepileptic drug levetiracetam (ucb L059) induces alterations in GABA metabolism and turnover in discrete areas of rat brain and reduces neuronal activity in substantia nigra pars reticulata. Brain Research, 1996, 735, 208-216.	1.1	70
434	D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Research, 1996, 23, 211-223.	0.8	232
435	The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. VI. Seasonal influences on maximal electroshock and pentylenetetrazol seizure thresholds. Epilepsy Research, 1996, 25, 3-10.	0.8	79
436	Exposure of DMBA-treated female rats in a 50-Hz, 50 μTesla magnetic field: effects on mammary tumor growth, melatonin levels, and T lymphocyte activation. Carcinogenesis, 1996, 17, 903-910.	1.3	78
437	A comparison of the effects of valproate and its major active metabolite E-2-en-valproate on single unit activity of substantia nigra pars reticulata neurons in rats. Journal of Pharmacology and Experimental Therapeutics, 1996, 277, 1305-14.	1.3	16
438	L-deprenyl (selegiline) exerts anticonvulsant effects against different seizure types in mice. Journal of Pharmacology and Experimental Therapeutics, 1996, 277, 1410-7.	1.3	23
439	Long-term studies on anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. I. Comparison of diazepam, clonazepam, clobazam and abecarnil. Journal of Pharmacology and Experimental Therapeutics, 1996, 279, 561-72.	1.3	29
440	Long-term studies on anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. II. The novel imidazoquinazolines NNC 14-0185 and NNC 14-0189. Journal of Pharmacology and Experimental Therapeutics, 1996, 279, 573-81.	1.3	8
441	Basic mechanisms of seizure propagation: targets for rational drug design and rational polypharmacy. Epilepsy Research Supplement, 1996, 11, 17-43.	0.0	21
442	New Injectable Aqueous Carbamazepine Solution Through Complexing with 2-Hydroxypropyl-beta-Cyclodextrin: Tolerability and Pharmacokinetics After Intravenous Injection in Comparison to a Glycofurol-Based Formulation. Epilepsia, 1995, 36, 255-261.	2.6	27
443	Kindling Increases the Sensitivity of Rats to Adverse Effects of Certain Antiepileptic Drugs. Epilepsia, 1995, 36, 763-771.	2.6	71
444	Comparison of Anticonvulsant Efficacy of Valproate During Prolonged Treatment with One and Three Daily Doses or Continuous ("Controlled Release") Administration in a Model of Generalized Seizures in Rats. Epilepsia, 1995, 36, 929-937.	2.6	30
445	Gonadal sex hormones and dystonia: Experimental studies in genetically dystonic hamsters. Movement Disorders, 1995, 10, 92-102.	2.2	28
446	Development and Pharmacological Suppression of Secondary Afterdischarges in the Hippocampus of Amygdala-kindled Rats. European Journal of Neuroscience, 1995, 7, 732-741.	1.2	40
447	Behavioural response to pharmacologic manipulation of serotonin receptors in the genetically dystonic hamster. Pharmacology Biochemistry and Behavior, 1995, 52, 655-665.	1.3	15
448	Strong induction of c-fos in the piriform cortex during focal seizures evoked from different limbic brain sites. Brain Research, 1995, 671, 338-344.	1.1	56
449	Reduction in firing rate of substantia nigra pars reticulata neurons by valproate: influence of different types of anesthesia in rats. Brain Research, 1995, 702, 133-144.	1.1	30
450	In vivo exposure of rats to a weak alternating magnetic field increases ornithine decarboxylase activity in the mammary gland by a similar extent as the carcinogen DMBA. Cancer Letters, 1995, 90, 207-214.	3.2	72

#	Article	IF	CITATIONS
451	Linear relationship between flux density and tumor co-promoting effect of prolonged magnetic field exposure in a breast cancer model. Cancer Letters, 1995, 96, 175-180.	3.2	49
452	Dose-dependent anticonvulsant and proconvulsant effects of nitric oxide synthase inhibitors on seizure threshold in a cortical stimulation model in rats. European Journal of Pharmacology, 1995, 274, 73-81.	1.7	86
453	Alterations in plasma and brain amino acids after administration of the glycine/NMDA receptor partial agonist, d-cycloserine, to mice and rats. European Journal of Pharmacology, 1995, 273, 197-201.	1.7	20
454	Systemic administration of kainate induces marked increases of endogenous kynurenic acid in various brain regions and plasma of rats. European Journal of Pharmacology, 1995, 286, 167-175.	1.7	37
455	Differences in mossy fibre sprouting during conventional and rapid amygdala kindling of the rat. Neuroscience Letters, 1995, 190, 199-202.	1.0	31
456	A histopathological study on alterations in DMBA-induced mammary carcinogenesis in rats with 50 Hz, 100 μT magnetic field exposure. Carcinogenesis, 1995, 16, 119-125.	1.3	89
457	Does prolonged implantation of depth electrodes predispose the brain to kindling?. Brain Research, 1995, 697, 197-204.	1.1	58
458	Susceptibility of different cell layers of the anterior and posterior part of the piriform cortex to electrical stimulation and kindling: comparison with the basolateral amygdala and "area tempestas― Neuroscience, 1995, 66, 265-276.	1.1	73
459	Regionally Selective and Ageâ€Dependent Alterations in Benzodiazepine Receptor Binding in the Genetically Dystonic Hamster. Journal of Neurochemistry, 1995, 64, 2153-2158.	2.1	32
460	Anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. Comparison of diazepam, bretazenil and abecarnil. Journal of Pharmacology and Experimental Therapeutics, 1995, 275, 693-702.	1.3	40
461	Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation?. Epilepsy Research, 1994, 17, 95-134.	0.8	216
462	Differential effects of vigabatrin, ?-acetylenic GABA, aminooxyacetic acid, and valproate on levels of various amino acids in rat brain regions and plasma. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 270-8.	1.4	67
463	Effects of static and time-varying (50-Hz) magnetic fields on reproduction and fetal development in rats. Teratology, 1994, 50, 229-237.	1.7	102
464	Low Doses of the Glycine/NMDA Receptor AntagonistR-(+)-HA-966 but not d-Cycloserine Induce Paroxysmal Activity in Limbic Brain Regions of Kindled Rats. European Journal of Neuroscience, 1994, 6, 1710-1719.	1.2	22
465	Marked regional disturbances in brain metabolism of monoaminergic neurotransmitters in the genetically dystonic hamster. Brain Research, 1994, 658, 199-208.	1.1	23
466	Sex differences in the anticonvulsant efficacy of phenytoin in amygdala-kindled rats. Brain Research, 1994, 638, 45-52.	1.1	24
467	(+)-WIN 55,212-2, a novel cannabinoid receptor agonist, exerts antidystonic effects in mutant dystonic hamsters. European Journal of Pharmacology, 1994, 264, 371-377.	1.7	42
468	The novel antiepileptic drug, lamotrigine, exerts prodystonic effects in a mutant hamster model of generalised dystomia. European Journal of Pharmacology, 1994, 264, 345-351.	1.7	23

#	Article	IF	CITATIONS
469	The novel selective and silent 5-HT1A receptor antagonist (+)-WAY-100135 aggravates dystonic movements in a mutant hamster model. European Journal of Pharmacology, 1994, 255, 235-238.	1.7	6
470	Effect of the glycine/NMDA receptor partial agonist, D-cycloserine, on seizure threshold and some pharmacodynamic effects of MK-801 in mice. European Journal of Pharmacology, 1994, 257, 217-225.	1.7	41
471	Over-additive anticonvulsant effect of memantine and NBQX in kindled rats. European Journal of Pharmacology, 1994, 259, R3-R5.	1.7	41
472	Anticonvulsant effects of the glycine/NMDA receptor ligands <scp>d</scp> â€cycloserine and <scp>d</scp> â€serine but not Râ€(+)â€HAâ€966 in amygdalaâ€kindled rats. British Journal of Pharmacology, 19 112, 97-106.	94,7	59
473	Effects of the nonâ€NMDA antagonists NBQX and the 2,3â€benzodiazepine GYKI 52466 on different seizure types in mice: comparison with diazepam and interactions with flumazenil. British Journal of Pharmacology, 1994, 113, 1349-1357.	2.7	57
474	Animal studies on the role of 50/60-hertz magnetic fields in carcinogenesis. Life Sciences, 1994, 54, 1531-1543.	2.0	81
475	Effects of Weak Alternating Magnetic Fields on Nocturnal Melatonin Production and Mammary Carcinogenesis in Rats. Oncology, 1994, 51, 288-295.	0.9	97
476	Effects of magnetic fields on mammary tumor development induced by 7, 12-dimethylbenz(a)anthracene in rats. Bioelectromagnetics, 1993, 14, 131-143.	0.9	82
477	Determination of GABA and vigabatrin in human plasma by a rapid and simple HPLC method: correlation between clinical response to vigabatrin and increase in plasma GABA. Epilepsy Research, 1993, 14, 245-255.	0.8	54
478	Effects of valproate and E-2-en-valproate on functional and morphological parameters of rat liver. III. Influence of fasting. Epilepsy Research, 1993, 16, 183-194.	0.8	7
479	Effects of valproate and E-2-en-valproate on functional and morphological parameters of rat liver. II. Influence of phenobarbital comedication. Epilepsy Research, 1993, 15, 113-131.	0.8	26
480	Transmitter amino acid levels in rat brain regions after amygdala-kindling or chronic electrode implantation without kindling: Evidence for a pro-kindling effect of prolonged electrode implantation. Neurochemical Research, 1993, 18, 775-781.	1.6	52
481	Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochemical Research, 1993, 18, 485-502.	1.6	140
482	Low Doses of NMDA Receptor Antagonists Synergistically Increase the Anticonvulsant Effect of the AMPA Receptor Antagonist NBQX in the Kindling Model of Epilepsy. European Journal of Neuroscience, 1993, 5, 1545-1550.	1.2	89
483	The role of technical, biological, and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. V. Lack of seasonal influences on amygdala kindling in rats. Epilepsy Research, 1993, 16, 131-136.	0.8	14
484	Pharmacological characterization of phenytoin-resistant amygdala-kindled rats, a new model of drug-resistant partial epilepsy. Epilepsy Research, 1993, 15, 207-219.	0.8	106
485	The effects of lesions of the posterior piriform cortex on amygdala kindling in the rat. Brain Research, 1993, 615, 295-303.	1.1	33
486	Effects of the novel 5-HT1A receptor antagonist, (+)-way 100135, on stereotyped behaviour induced by the NMDA receptor antagonist dizocilpine in rats. European Journal of Pharmacology, 1993, 242, 99-104.	1.7	31

#	Article	IF	CITATIONS
487	Comparison of competitive and uncompetitive NMDA receptor antagonists with regard to monoaminergic neuronal activity and behavioural effects in rats. European Journal of Pharmacology, 1993, 242, 263-274.	1.7	75
488	The AMPA receptor antagonist NBQX exerts antidystonic effects in an animal model of idiopathic dystonia. European Journal of Pharmacology, 1993, 231, 287-291.	1.7	33
489	The κ-opioid receptor agonist, U50,488H, exerts antidystonic activity in a mutant hamster model of generalized dystonia. European Journal of Pharmacology, 1993, 236, 289-294.	1.7	8
490	Alterations in pharmacological sensitivity of GABAergic but not dopaminergic and glutamatergic systems during ontogenesis in dystonic mutant hamsters. European Journal of Pharmacology, 1993, 231, 111-119.	1.7	37
491	Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. European Journal of Pharmacology, 1993, 232, 147-158.	1.7	244
492	Differences in anticonvulsant potency and adverse effects between dextromethorphan and dextrorphan in amygdala-kindled and non-kindled rats. European Journal of Pharmacology, 1993, 238, 191-200.	1.7	37
493	Effects of the competitive NMDA receptor antagonist, CGP 37849, on anticonvulsant activity and adverse effects of valproate in amygdala-kindled rats. European Journal of Pharmacology, 1993, 234, 237-245.	1.7	21
494	The glycine/NMDA receptor ligand (+)-HA-966 but not D-cycloserine has potent antidystonic efficacy in a genetic animal model of dystonia. European Journal of Pharmacology, 1993, 239, 245-247.	1.7	14
495	The atypical neuroleptic, clozapine, exerts antidystonic activity in a mutant hamster model. Comparison with haloperidol. European Journal of Pharmacology, 1993, 242, 309-312.	1.7	17
496	In vivo administration of valproate reduces the nerve terminal (synaptosomal) activity of GABA aminotransferase in discrete brain areas of rats. Neuroscience Letters, 1993, 160, 177-180.	1.0	41
497	Plasma GABA and seizure control with vigabatrin. Lancet, The, 1993, 341, 117.	6.3	11
498	Abecarnil Shows Reduced Tolerance Development and Dependence Potential in Comparison to Diazepam: Animal Studies. , 1993, 11, 96-112.		6
499	Basic aspects of epilepsy. Current Opinion in Neurology and Neurosurgery, 1993, 6, 223-32.	0.4	20
500	Anticonvulsant efficacy and adverse effects of phenytoin during chronic treatment in amygdala-kindled rats. Journal of Pharmacology and Experimental Therapeutics, 1993, 266, 216-23.	1.3	26
501	Increase of serotonin in plasma during onset of halothane-induced malignant hyperthermia in pigs. European Journal of Pharmacology, 1992, 220, 91-94.	1.7	17
502	The behavioural effects of MK-801 in rats: involvement of dopaminergic, serotonergic and noradrenergic systems. European Journal of Pharmacology, 1992, 215, 199-208.	1.7	162
503	Effects of pharmacological manipulation of dopaminergic and cholinergic neurotransmission in genetically dystonic hamsters. European Journal of Pharmacology, 1992, 213, 31-39.	1.7	23
504	Development of tolerance to the anticonvulsant effect of vigabatrin in amygdala-kindled rats. European Journal of Pharmacology, 1992, 213, 351-366.	1.7	32

#	Article	IF	CITATIONS
505	Kindled rats are more sensitive than non-kindled rats to the behavioural effects of combined treatment with MK-801 and valproate. European Journal of Pharmacology, 1992, 222, 273-278.	1.7	21
506	Regional alterations in brain amino acids during the estrous cycle of the rat. Neurochemical Research, 1992, 17, 973-977.	1.6	31
507	Abnormalities in Amino Acid Neurotransmitters in Discrete Brain Regions of Genetically Dystonic Hamsters. Journal of Neurochemistry, 1992, 59, 689-694.	2.1	44
508	Lack of changes in seizure susceptibility during the estrous cycle in kindled rats. Epilepsy Research, 1992, 13, 199-204.	0.8	90
509	Intravenous valproate: onset and duration of anticonvulsant activity against a series of electroconvulsions in comparison with diazepam and phenytoin. Epilepsy Research, 1992, 13, 215-221.	0.8	43
510	Withdrawal precipitation by benzodiazepine receptor antagonists in dogs chronically treated with diazepam or the novel anxiolytic and anticonvulsant ?-carboline abecarnil. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 345, 452-60.	1.4	16
511	Effects of valproate and E-2-en-valproate on functional and morphological parameters of rat liver. I. Biochemical, histopathological and pharmacokinetic studies. Epilepsy Research, 1992, 13, 187-198.	0.8	25
512	Pharmacological, toxicological and neurochemical effects of Δ2(E)-valproate in animals. Pharmaceutisch Weekblad Scientific Edition, 1992, 14, 139-143.	0.9	29
513	Genetic Animal Models of Epilepsy. , 1992, , 111-135.		5
514	The receptor antagonist MK-801 induces increases in dopamine and serotonin metabolism in several brain regions of rats. Neuroscience Letters, 1991, 128, 191-194.	1.0	151
515	Antidystonic effects of the NMDA receptor antagonists memantine, MK-801 and CGP 37849 in a mutant hamster model of paroxysmal dystonia. Neuroscience Letters, 1991, 133, 57-60.	1.0	45
516	Regional alterations in brain amino acids after administration of the receptor antagonists MK-801 and CGP 39551 in rats. Neuroscience Letters, 1991, 124, 115-118.	1.0	17
517	Effects of pharmacological manipulation of GABAergic neurotransmission in a new mutant hamster model of paroxysmal dystonia. European Journal of Pharmacology, 1991, 192, 207-219.	1.7	69
518	Tolerance to anticonvulsant effects of the partial benzodiazepine receptor agonist abecarnil in kindled rats involves learning. European Journal of Pharmacology, 1991, 202, 303-310.	1.7	19
519	Kindling from stimulation of a highly sensitive locus in the posterior part of the piriform cortex. Comparison with amygdala kindling and effects of antiepileptic drugs. Brain Research, 1991, 538, 196-202.	1.1	46
520	Responses to NMDA receptor antagonists altered by epileptogenesis. Trends in Pharmacological Sciences, 1991, 12, 52.	4.0	64
521	Gabapentin increases aminooxyacetic acid-induced GABA accumulation in several regions of rat brain. Neuroscience Letters, 1991, 128, 150-154.	1.0	182
522	Alterations in the Renal Excretion of Valproate and Its Metabolites After Chronic Treatment. Epilepsia, 1991, 32, 146-150.	2.6	24

#	Article	IF	CITATIONS
523	Marked Increases of Plasma Gamma-Aminobutyric Acid Concentrations in Cirrhotic Patients with Portacaval Shunts Are Not Associated with Alterations of Cerebral Functions. Digestion, 1991, 49, 212-220.	1.2	11
524	The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices. Epilepsy Research, 1991, 9, 1-10.	0.8	141
525	The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylenetetrazole seizure models. Epilepsy Research, 1991, 8, 171-189.	0.8	349
526	The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Research, 1991, 8, 79-94.	0.8	296
527	Kindling does not induce persistent changes in fluorographic labeling patterns of benzodiazepine binding proteins in various rat brain regions. Epilepsy Research, 1991, 9, 105-112.	0.8	3
528	Trans-2-en-valproate: reevaluation of its anticonvulsant efficacy in standardized seizure models in mice, rats and dogs. Epilepsy Research, 1991, 9, 195-210.	0.8	30
529	Kindling as a model of drug-resistant partial epilepsy: selection of phenytoin-resistant and nonresistant rats. Journal of Pharmacology and Experimental Therapeutics, 1991, 258, 483-9.	1.3	98
530	The novel competitive N-methyl-D-aspartate (NMDA) antagonist CGP 37849 preferentially induces phencyclidine-like behavioral effects in kindled rats: attenuation by manipulation of dopamine, alpha-1 and serotonin1A receptors. Journal of Pharmacology and Experimental Therapeutics, 1991, 257, 1146-53.	1.3	55
531	Neuropathological studies in a mutant hamster model of paroxysmal dystonia. Movement Disorders, 1990, 5, 286-293.	2.2	39
532	The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. I. The influence of administration vehicles. Epilepsy Research, 1990, 7, 173-181.	0.8	43
533	The effect of interstimulation interval on the assessment of anticonvulsant drug potency in fully kindled rats. Epilepsy Research, 1990, 7, 182-196.	0.8	19
534	Selective bilateral destruction of substantia nigra has no effect on kindled seizures induced from stimulation of amygdala or piriform cortex in rats. Neuroscience Letters, 1990, 113, 205-210.	1.0	18
535	Lesions of the deep prepiriform cortex (â€~area tempestas') in rats do not affect the convulsant action of systemically administered bicuculline. Neuroscience Letters, 1990, 108, 161-166.	1.0	8
536	Phenytoin potently increases the threshold for focal seizures in amygdala-kindled rats. Neuropharmacology, 1990, 29, 845-851.	2.0	90
537	Development of tolerance to clobazam in fully kindled rats: Effects of intermittent flumazenil administration. European Journal of Pharmacology, 1990, 180, 255-271.	1.7	17
538	Effect of selective bilateral destruction of the substantia nigra on antiepileptic drug actions in kindled rats. European Journal of Pharmacology, 1990, 186, 157-167.	1.7	16
539	Effect of Selective Lesions within the Substantia Nigra on the Anticonvulsant Effect of Antiepileptic Drugs in Fully-Kindled Rats. Advances in Behavioral Biology, 1990, , 253-266.	0.2	1
540	Anticonvulsant action of the beta-carboline abecarnil: studies in rodents and baboon, Papio papio. Journal of Pharmacology and Experimental Therapeutics, 1990, 253, 344-52.	1.3	65

#	Article	IF	CITATIONS
541	Pharmacokinetics, anticonvulsant efficacy and adverse effects of the beta-carboline abecarnil, a novel ligand for benzodiazepine receptors, after acute and chronic administration in dogs. Journal of Pharmacology and Experimental Therapeutics, 1990, 255, 541-8.	1.3	33
542	Theszmutant hamster: A genetic model of epilepsy or of paroxysmal dystonia?. Movement Disorders, 1989, 4, 219-232.	2.2	109
543	Use of Inhibitors of ?-Aminobutyric Acid (GABA) Transaminase for the Estimation of GABA Turnover in Various Brain Regions of Rats: A Reevaluation of Aminooxyacetic Acid. Journal of Neurochemistry, 1989, 53, 1737-1750.	2.1	60
544	Amygdala-kindling as a model for chronic efficacy studies on antiepileptic drugs: Experiments with carbamazepine. Neuropharmacology, 1989, 28, 599-610.	2.0	49
545	Comparison of the anticonvulsant efficacy of primidone and phenobarbital during chronic treatment of amygdala-kindled rats. European Journal of Pharmacology, 1989, 162, 309-322.	1.7	39
546	Anticonvulsant and proconvulsant effects of inhibitors of GABA degradation in the amygdala-kindling model. European Journal of Pharmacology, 1989, 163, 1-14.	1.7	76
547	Valproate enhances GABA turnover in the substantia nigra. Brain Research, 1989, 501, 198-203.	1.1	76
548	Physical dependence on diazepam in the dog: precipitation of different abstinence syndromes by the benzodiazepine receptor antagonists Ro 15–1788 and ZK 93426. British Journal of Pharmacology, 1989, 97, 843-852.	2.7	19
549	INTERMITTENT FLUMAZENIL AND BENZODIAZEPINE TOLERANCE: DISCOURAGING FINDINGS IN RATS. Lancet, The, 1989, 333, 1386-1387.	6.3	14
550	Valproic acid in amygdala-kindled rats: alterations in anticonvulsant efficacy, adverse effects and drug and metabolite levels in various brain regions during chronic treatment. Journal of Pharmacology and Experimental Therapeutics, 1989, 250, 1067-78.	1.3	50
551	Chronic treatment with diazepam or the inverse benzodiazepine receptor agonist FG 7142 causes differential changes in the effects of GABA receptor stimulation. Epilepsy Research, 1988, 2, 253-259.	0.8	19
552	Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Research, 1988, 2, 145-181.	0.8	738
553	Marked increase in anticonvulsant activity but decrease in wet-dog shake behaviour during short-term treatment of amygdala-kindled rats with valproic acid. European Journal of Pharmacology, 1988, 150, 221-232.	1.7	32
554	Evaluation of CPP, a selective NMDA antagonist, in various rodent models of epilepsy. Comparison with other NMDA antagonists, and with diazepam and phenobarbital. European Journal of Pharmacology, 1988, 152, 9-17.	1.7	75
555	Pharmacokinetics of non-steroidal anti-inflammatory drugs in male rabbits after acute and chronic administration and effect of chronic treatment on seminal prostaglandins, sperm quality and fertility. Reproduction, 1988, 82, 353-364.	1.1	13
556	Penetration of Valproate and its Active Metabolites into Cerebrospinal Fluid of Children with Epilepsy. Epilepsia, 1988, 29, 311-316.	2.6	37
557	One to three day dose intervals during subchronic treatment of epileptic gerbils with γ-vinyl GABA: anticonvulsant efficacy and alterations in regional brain GABA levels. European Journal of Pharmacology, 1987, 143, 335-342.	1.7	38
558	Anticonvulsant efficacy of clonazepam and the β-carboline ZK 93423 during chronic treatment in amygdala-kindled rats. European Journal of Pharmacology, 1987, 143, 403-414.	1.7	63

#	Article	IF	CITATIONS
559	Hippocampal glutamate decarboxylase activity is not altered in gerbils with high seizure susceptibility. Biochemical Pharmacology, 1987, 36, 979-982.	2.0	9
560	Postictal refractoriness associated with reduction of glutamic acid decarboxylase in discrete brain regions in epilepsy-prone gerbils. Biochemical Pharmacology, 1987, 36, 2695-2699.	2.0	5
561	Further evidence for abnormal GABAergic circuits in amygdala-kindled rats. Brain Research, 1987, 420, 385-390.	1.1	93
562	Effect of microinjections of γ-vinyl GABA or isoniazid into substantia nigra on the development of amygdala kindling in rats. Experimental Neurology, 1987, 95, 622-638.	2.0	61
563	Effects of aminophylline and enprofylline on the protective activity of phenobarbital against amygdala-kindled seizures in rats. Epilepsy Research, 1987, 1, 234-238.	0.8	29
564	Comparison of drugs with different selectivity for central α1- and α2-adrenoceptors in animal models of epilepsy. Epilepsy Research, 1987, 1, 165-172.	0.8	48
565	Diazepam Increases ?-Aminobutyric Acid in Human Cerebrospinal Fluid. Journal of Neurochemistry, 1987, 49, 152-157.	2.1	28
566	Î ³ -Acetylenic GABA antagonizes the decrease in synaptosomal GABA concentrations but not the Scizures induced by 3-mercaptopropionic acid in rats. Biochemical Pharmacology, 1986, 35, 3176-3180.	2.0	9
567	Is amygdala kindling in rats a model for drug-resistant partial epilepsy?. Experimental Neurology, 1986, 93, 211-226.	2.0	160
568	Studies on the involvement of dopamine D-1 and D-2 receptors in the anticonvulsant effect of dopamine agonists in various rodent models of epilepsy. European Journal of Pharmacology, 1986, 128, 55-65.	1.7	107
569	AE Mice: An Inbred Mouse Strain with Interesting Features for Epilepsy Research. Epilepsia, 1986, 27, 657-664.	2.6	11
570	Low Levels of ?-Aminobutyric Acid in Cerebrospinal Fluid of Dogs with Epilepsy. Journal of Neurochemistry, 1986, 46, 1322-1325.	2.1	27
571	Development of tolerance to the anticonvulsant effect of GABAmimetic drugs in genetically epilepsy-prone gerbils. Pharmacology Biochemistry and Behavior, 1986, 24, 1007-1013.	1.3	27
572	Cerebrospinal Fluid γâ€Aminobutyric Acid Levels in Children with Different Types of Epilepsy: Effect of Anticonvulsant Treatment. Epilepsia, 1985, 26, 314-319.	2.6	86
573	Improved Method for Isolating Synaptosomes from 11 Regions of One Rat Brain: Electron Microscopic and Biochemical Characterization and Use in the Study of Drug Effects on Nerve Terminal ?-Aminobutyric Acid in Vivo. Journal of Neurochemistry, 1985, 45, 879-889.	2.1	60
574	Therapeutic efficacy of phenobarbital and primidone in canine epilepsy: a comparison. Journal of Veterinary Pharmacology and Therapeutics, 1985, 8, 113-119.	0.6	96
575	Pharmacokinetics of antiâ€epileptic drugs in the dog: a review. Journal of Veterinary Pharmacology and Therapeutics, 1985, 8, 219-233.	0.6	51
576	Valproic acid and active unsaturated metabolite (2-EN): Transfer to mouse liver following human therapeutic doses. Biopharmaceutics and Drug Disposition, 1985, 6, 1-8.	1.1	11

#	Article	IF	CITATIONS
577	Evaluation of the 5-hydroxytryptamine receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin in different rodent models of epilepsy. Neuroscience Letters, 1985, 60, 201-206.	1.0	51
578	Pharmacological evaluation of various metabolites and analogues of valproic acidAnticonvulsant and toxic potencies in mice. Neuropharmacology, 1985, 24, 427-435.	2.0	136
579	Evidence for impaired GABAergic activity in the substantia nigra of amygdaloid kindled rats. Brain Research, 1985, 339, 146-150.	1.1	104
580	In vivo effects of aminooxyacetic acid and valproic acid on nerve terminal (synaptosomal) GABA levels in discrete brain areas of the rat. Biochemical Pharmacology, 1985, 34, 1747-1756.	2.0	66
581	Development of tolerance to the anticonvulsant effect of diazepam in amygdala-kindled rats. Experimental Neurology, 1985, 90, 373-384.	2.0	54
582	Evaluation of different GABA receptor agonists in the kindled amygdala seizure model in rats. Experimental Neurology, 1985, 89, 454-460.	2.0	29
583	Anticonvulsant action in the epileptic gerbil of novel inhibitors of GABA uptake. European Journal of Pharmacology, 1985, 110, 103-108.	1.7	35
584	Evaluation of different Î ² -carbolines in Mongolian gerbils with reflex epilepsy. European Journal of Pharmacology, 1985, 114, 261-266.	1.7	16
585	Antagonism of N-methyl-D,L-aspartic acid-induced convulsions by antiepileptic drugs and other agents. European Journal of Pharmacology, 1985, 108, 273-280.	1.7	111
586	Evaluation of epileptic dogs as an animal model of human epilepsy. Arzneimittelforschung, 1985, 35, 82-7.	0.5	24
587	Valproic Acid and Metabolites: Pharmacological and Toxicological Studies. Epilepsia, 1984, 25, S14-22.	2.6	129
588	Drug-induced changes in GABA content of nerve endings in 11 rat brain regions. Correlation to pharmacological effects. Neuroscience Letters, 1984, 47, 325-331.	1.0	27
589	Development of a synaptosomal model to determine drug-induced in vivo changes in GABA-levels of nerve endings in 11 brain regions of the rat. Neurochemistry International, 1984, 6, 441-451.	1.9	42
590	VALPROIC ACID INCREASES Î ³ -AMINOBUTYRIC ACID IN CSF OF EPILEPTIC CHILDREN. Lancet, The, 1984, 324, 225.	. 6.3	55
591	Comparative evaluation of anticonvulsant and toxic potencies of valproic acid and 2-en-valproic acid in different animal models of epilepsy. European Journal of Pharmacology, 1984, 99, 211-218.	1.7	86
592	Relationship between drug-induced increases of GABA levels in discrete brain areas and different pharmacological effects in rats. Biochemical Pharmacology, 1984, 33, 1907-1914.	2.0	48
593	Kinetics of Penetration of Common Antiepileptic Drugs into Cerebrospinal Fluid. Epilepsia, 1984, 25, 346-352.	2.6	57
594	Monitoring of Î ³ -Aminobutyric Acid in Human Cerebrospinal Fluid. Therapeutic Drug Monitoring, 1984, 6, 227-231.	1.0	20

34

#	Article	IF	CITATIONS
595	Evaluation of anticonvulsant drugs in genetic animal models of epilepsy. Federation Proceedings, 1984, 43, 276-84.	1.3	26
596	Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review. Methods and Findings in Experimental and Clinical Pharmacology, 1984, 6, 531-47.	0.8	34
597	The dog as a model in epilepsy research: Comparative pharmacokinetics. Veterinary Research Communications, 1983, 7, 307-309.	0.6	2
598	Alterations in CSF GABA levels and seizure susceptibility developing during repeated administration of pentetrazole in dogs. Effects of γ-acetylenic GABA, valproic acid and phenobarbital. Neurochemistry International, 1983, 5, 405-412.	1.9	17
599	Effect of 2-aminoethanol on the synthesis, binding, uptake and metabolism of GABA. Neuroscience Letters, 1983, 42, 293-297.	1.0	11
600	Rapid Gas Chromatographic Assay of Underivatized Clonazepam in Plasma. Therapeutic Drug Monitoring, 1983, 5, 229-234.	1.0	22
601	High anticonvulsant potency of gamma-aminobutyric acid (GABA)mimetic drugs in gerbils with genetically determined epilepsy. Journal of Pharmacology and Experimental Therapeutics, 1983, 226, 839-44.	1.3	33
602	Rapid Gas Chromatographic Measurement of Diazepam and Its Metabolites Desmethyldiazepam, Oxazepam, and 3-Hydroxydiazepam (Temazepam) in Small Samples of Plasma. Therapeutic Drug Monitoring, 1982, 4, 315-318.	1.0	16
603	Comparative assay of anticonvulsant and toxic potencies of sixteen GABAmimetic drugs. Neuropharmacology, 1982, 21, 803-810.	2.0	83
604	Anticonvulsant and biochemical effects of inhibitors of gaba aminotransferase and valproic acid during subchronic treatment in mice. Biochemical Pharmacology, 1982, 31, 837-842.	2.0	46
605	Anticonvulsant Potency of Unmetabolized Diazepam. Pharmacology, 1982, 25, 154-159.	0.9	32
606	EDTA Inhibits In Vitro Increases in the GABA Content of Human CSF. Journal of Neurochemistry, 1982, 39, 251-254.	2.1	8
607	Relationship Between GABA Concentrations in Cerebrospinal Fluid and Seizure Excitability. Journal of Neurochemistry, 1982, 38, 293-295.	2.1	53
608	Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and gamma-aminobutyric acid (GABA) metabolism in the mouse. Journal of Pharmacology and Experimental Therapeutics, 1982, 220, 654-9.	1.3	92
609	Valproic acid: metabolite concentrations in plasma and brain, anticonvulsant activity, and effects on GABA metabolism during subacute treatment in mice. Archives Internationales De Pharmacodynamie Et De Thérapie, 1982, 257, 20-31.	0.2	20
610	Treatment of canine epilepsy with primidone. Journal of the American Veterinary Medical Association, 1982, 181, 592-5.	0.2	14
611	Valproate induced changes in GABA metabolism at the subcellular level. Biochemical Pharmacology, 1981, 30, 1364-1366.	2.0	117
612	Correlation between alterations in brain GABA metabolism and seizure excitability following administration of GABA aminotransferase inhibitors and valproic acid—a re-evaluation. Neurochemistry International, 1981, 3, 397-404.	1.9	24

#	Article	IF	CITATIONS
613	Effect of Inhibitors of GABA Aminotransferase on the Metabolism of GABA in Brain Tissue and Synaptosomal Fractions. Journal of Neurochemistry, 1981, 36, 1521-1527.	2.1	93
614	Relationship between drug-induced changes in seizure thresholds and the GABA content of brain and brain nerve endings. Naunyn-Schmiedeberg's Archives of Pharmacology, 1981, 317, 131-134.	1.4	25
615	GABA in Cerebrospinal Fluid of Children with Febrile Convulsions. Epilepsia, 1981, 22, 697-702.	2.6	50
616	A comparative study of the pharmacology of inhibitors of GABA-metabolism. Naunyn-Schmiedeberg's Archives of Pharmacology, 1980, 315, 119-128.	1.4	80
617	Cetyl GABA: Effect on convulsant thresholds in mice and acute toxicity. Neuropharmacology, 1980, 19, 217-220.	2.0	58
618	GABA in plasma and cerebrospinal fluid of different species. Effects of ?-acetylenic GABA, ?-vinyl GABA and sodium valproate. Journal of Neurochemistry, 1979, 32, 1587-1591.	2.1	133
619	Influence of inhibitors of the high affinity GABA uptake on seizure thresholds in mice. Neuropharmacology, 1979, 18, 581-590.	2.0	126
620	Pharmacokinetics of primidone and its active metabolites in the dog. Archives Internationales De Pharmacodynamie Et De Thérapie, 1979, 242, 14-30.	0.2	26
621	Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology, 1978, 17, 637-642.	2.0	84
622	Aminooxyacetic acid: Correlation between biochemical effects, anticonvulsant action and toxicity in mice. Biochemical Pharmacology, 1978, 27, 103-108.	2.0	63
623	Consecutive Gas Chromatographic Determination of Phenytoin, Phenobarbital, Primidone, Phenylethylmalondiamide, Carbamazepine, Trimethadione, Dimethadione, Ethosuximide, and Valproate from the Same Serum Specimen. Epilepsia, 1978, 19, 463-473.	2.6	20
624	Identification of Metabolites of Valproic Acid in Serum of Humans, Dog, Rat, and Mouse. Epilepsia, 1978, 19, 591-602.	2.6	46
625	Serum protein binding and pharmacokinetics of valproate in man, dog, rat and mouse. Journal of Pharmacology and Experimental Therapeutics, 1978, 204, 255-61.	1.3	91
626	Effect of convulsant and anticonvulsant agents on level and metabolism of ?-aminobutyric acid in mouse brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 1977, 296, 263-269.	1.4	90
627	Dogs as a Natural Animal Model of Epilepsy. Frontiers in Veterinary Science, 0, 9, .	0.9	18