Laurie T Krug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7012319/publications.pdf Version: 2024-02-01

LAUDIE T KDUC

#	Article	IF	CITATIONS
1	Role of Endoplasmic Reticulum Stress in Age-Related Susceptibility to Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 748-756.	1.4	118
2	The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood, 2005, 105, 4028-4034.	0.6	78
3	Inhibition of NF-κB Activation In Vivo Impairs Establishment of Gammaherpesvirus Latency. PLoS Pathogens, 2007, 3, e11.	2.1	68
4	A gammaherpesvirus-secreted activator of \hat{V}^2 4+ CD8+ T cells regulates chronic infection and immunopathology. Journal of Experimental Medicine, 2008, 205, 669-684.	4.2	54
5	Gammaherpesviral Gene Expression and Virion Composition Are Broadly Controlled by Accelerated mRNA Degradation. PLoS Pathogens, 2014, 10, e1003882.	2.1	53
6	Short Duration of Elevated vIRF-1 Expression during Lytic Replication of Human Herpesvirus 8 Limits Its Ability To Block Antiviral Responses Induced by Alpha Interferon in BCBL-1 Cells. Journal of Virology, 2004, 78, 6621-6635.	1.5	49
7	U94, the Human Herpesvirus 6 Homolog of the Parvovirus Nonstructural Gene, Is Highly Conserved among Isolates and Is Expressed at Low mRNA Levels as a Spliced Transcript. Virology, 2000, 268, 504-516.	1.1	45
8	A Gammaherpesvirus 68 Gene 50 Null Mutant Establishes Long-Term Latency in the Lung but Fails To Vaccinate against a Wild-Type Virus Challenge. Journal of Virology, 2006, 80, 1592-1598.	1.5	42
9	NF-κB p50 Plays Distinct Roles in the Establishment and Control of Murine Gammaherpesvirus 68 Latency. Journal of Virology, 2009, 83, 4732-4748.	1.5	35
10	Tiled Microarray Identification of Novel Viral Transcript Structures and Distinct Transcriptional Profiles during Two Modes of Productive Murine Gammaherpesvirus 68 Infection. Journal of Virology, 2012, 86, 4340-4357.	1.5	35
11	Inhibition of Infection and Replication of Human Herpesvirus 8 in Microvascular Endothelial Cells by Alpha Interferon and Phosphonoformic Acid. Journal of Virology, 2004, 78, 8359-8371.	1.5	33
12	Inhibition of NF-κB Signaling Reduces Virus Load and Gammaherpesvirus-Induced Pulmonary Fibrosis. American Journal of Pathology, 2010, 177, 608-621.	1.9	32
13	Roseolovirus molecular biology: recent advances. Current Opinion in Virology, 2014, 9, 170-177.	2.6	32
14	Gene delivery to mammalian cells using a graphene nanoribbon platform. Journal of Materials Chemistry B, 2017, 5, 2347-2354.	2.9	32
15	Conquering the Host: Determinants of Pathogenesis Learned from Murine Gammaherpesvirus 68. Annual Review of Virology, 2021, 8, 349-371.	3.0	29
16	Host restriction of murine gammaherpesvirus 68 replication by human APOBEC3 cytidine deaminases but not murine APOBEC3. Virology, 2014, 454-455, 215-226.	1.1	20
17	Murine Gammaherpesvirus 68 Pathogenesis Is Independent of Caspase-1 and Caspase-11 in Mice and Impairs Interleukin-11² Production upon Extrinsic Stimulation in Culture. Journal of Virology, 2015, 89, 6562-6574.	1.5	19
18	Ablation of STAT3 in the B Cell Compartment Restricts Gammaherpesvirus Latency <i>In Vivo</i> . MBio, 2016, 7, .	1.8	19

Laurie T Krug

#	Article	IF	CITATIONS
19	Variable Methylation of the Epstein-Barr Virus Wp EBNA Gene Promoter in B-Lymphoblastoid Cell Lines. Journal of Virology, 2004, 78, 14062-14065.	1.5	17
20	Absence of the Uracil DNA Glycosylase of Murine Gammaherpesvirus 68 Impairs Replication and Delays the Establishment of Latency <i>In Vivo</i> . Journal of Virology, 2015, 89, 3366-3379.	1.5	17
21	A role of hypoxia-inducible factor 1 alpha in Murine Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency. PLoS Pathogens, 2019, 15, e1008192.	2.1	17
22	Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Frontiers in Microbiology, 2016, 7, 1202.	1.5	16
23	Differences in DNA Binding Specificity among Roseolovirus Origin Binding Proteins. Virology, 2001, 288, 145-153.	1.1	13
24	Sequence Requirements for Interaction of Human Herpesvirus 7 Origin Binding Protein with the Origin of Lytic Replication. Journal of Virology, 2001, 75, 3925-3936.	1.5	13
25	RTA Occupancy of the Origin of Lytic Replication during Murine Gammaherpesvirus 68 Reactivation from B Cell Latency. Pathogens, 2017, 6, 9.	1.2	13
26	Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression. Viruses, 2015, 7, 2428-2449.	1.5	11
27	Combinatorial Loss of the Enzymatic Activities of Viral Uracil-DNA Glycosylase and Viral dUTPase Impairs Murine Gammaherpesvirus Pathogenesis and Leads to Increased Recombination-Based Deletion in the Viral Genome. MBio, 2018, 9, .	1.8	11
28	A codon-shuffling method to prevent reversion during production of replication-defective herpesvirus stocks: Implications for herpesvirus vaccines. Scientific Reports, 2017, 7, 44404.	1.6	9
29	Mutational pressure by host APOBEC3s more strongly affects genes expressed early in the lytic phase of herpes simplex virus-1 (HSV-1) and human polyomavirus (HPyV) infection. PLoS Pathogens, 2021, 17, e1009560.	2.1	9
30	Viral FGARAT ORF75A promotes early events in lytic infection and gammaherpesvirus pathogenesis in mice. PLoS Pathogens, 2018, 14, e1006843.	2.1	9
31	Complexities of gammaherpesvirus transcription revealed by microarrays and RNAseq. Current Opinion in Virology, 2013, 3, 276-284.	2.6	7
32	Murine Gammaherpesvirus 68 Infection of Mice: A Small Animal Model for Characterizing Basic Aspects of Gammaherpesvirus Pathogenesis. , 2009, , 735-775.		7
33	Gammaherpesvirus-infected germinal center cells express a distinct immunoglobulin repertoire. Life Science Alliance, 2020, 3, e201900526.	1.3	7
34	Roseoloviruses: unmet needs and research priorities. Current Opinion in Virology, 2014, 9, 167-169.	2.6	6
35	The replication and transcription activator of murine gammaherpesvirus 68 cooperatively enhances cytokine-activated, STAT3-mediated gene expression. Journal of Biological Chemistry, 2017, 292, 16257-16266.	1.6	6
36	IKKα-Mediated Noncanonical NF-κB Signaling Is Required To Support Murine Gammaherpesvirus 68 Latency <i>In Vivo</i> . Journal of Virology, 2022, 96, e0002722.	1.5	6

LAURIE T KRUG

#	Article	IF	CITATIONS
37	The Absence of M1 Leads to Increased Establishment of Murine Gammaherpesvirus 68 Latency in IgD-Negative B Cells. Journal of Virology, 2013, 87, 3597-3604.	1.5	5
38	Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses, 2020, 12, 788.	1.5	5
39	Enhanced Response of T Cells from Murine Gammaherpesvirus 68-Infected Mice Lacking the Suppressor of T Cell Receptor Signaling Molecules Sts-1 and Sts-2. PLoS ONE, 2014, 9, e90196.	1.1	4
40	Newly Identified Human Herpesviruses: HHV-6, HHV-7, and HHV-8. , 0, , 195-276.		2
41	RNA-guided gene editing of the murine gammaherpesvirus 68 genome reduces infectious virus production. PLoS ONE, 2021, 16, e0252313.	1.1	1
42	Editorial overview: Roseoloviruses: Stopping to smell the roses — the Roseoloviruses have come of age as human pathogens. Current Opinion in Virology, 2014, 9, vi-vii.	2.6	0
43	Title is missing!. , 2019, 15, e1008192.		0
44	Title is missing!. , 2019, 15, e1008192.		0
45	Title is missing!. , 2019, 15, e1008192.		0
46	Title is missing!. , 2019, 15, e1008192.		0
47	Title is missing!. , 2019, 15, e1008192.		0