
Kristine Y Deleon-Pennell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7011881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Research in Cardiology, 2017, 112, 33.	2.5	278
2	Temporal neutrophil polarization following myocardial infarction. Cardiovascular Research, 2016, 110, 51-61.	1.8	253
3	Mapping macrophage polarization over the myocardial infarction time continuum. Basic Research in Cardiology, 2018, 113, 26.	2.5	189
4	Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. Progress in Molecular Biology and Translational Science, 2017, 147, 75-100.	0.9	188
5	A Novel Collagen Matricryptin Reduces Left Ventricular Dilation Post-Myocardial Infarction by Promoting Scar Formation and Angiogenesis. Journal of the American College of Cardiology, 2015, 66, 1364-1374.	1.2	145
6	Fibroblast polarization over the myocardial infarction time continuum shifts roles from inflammation to angiogenesis. Basic Research in Cardiology, 2019, 114, 6.	2.5	118
7	Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biology, 2019, 75-76, 43-57.	1.5	106
8	Transition of Macrophages to Fibroblast-Like Cells in HealingÂMyocardial Infarction. Journal of the American College of Cardiology, 2019, 74, 3124-3135.	1.2	92
9	Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. Journal of Molecular and Cellular Cardiology, 2016, 91, 134-140.	0.9	88
10	LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling. Basic Research in Cardiology, 2018, 113, 40.	2.5	86
11	Texas 3-Step decellularization protocol: Looking at the cardiac extracellular matrix. Journal of Proteomics, 2013, 86, 43-52.	1.2	81
12	CD36 ls a Matrix Metalloproteinase-9 Substrate That Stimulates Neutrophil Apoptosis and Removal During Cardiac Remodeling. Circulation: Cardiovascular Genetics, 2016, 9, 14-25.	5.1	78
13	Neutrophil proteome shifts over the myocardial infarction time continuum. Basic Research in Cardiology, 2019, 114, 37.	2.5	78
14	Fibroblasts: The arbiters of extracellular matrix remodeling. Matrix Biology, 2020, 91-92, 1-7.	1.5	75
15	Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 475-483.	1.7	62
16	Unassisted Transport of <i>N</i> -Acetyl- <scp>l</scp> -tryptophanamide through Membrane: Experiment and Simulation of Kinetics. Journal of Physical Chemistry B, 2012, 116, 2739-2750.	1.2	59
17	Building a better infarct: Modulation of collagen cross-linking to increase infarct stiffness and reduce left ventricular dilation post-myocardial infarction. Journal of Molecular and Cellular Cardiology, 2015, 85, 229-239.	0.9	59
18	CD8 ⁺ T-cells negatively regulate inflammation post-myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H581-H596.	1.5	56

#	Article	IF	CITATIONS
19	Periodontal-induced chronic inflammation triggers macrophage secretion of Ccl12 to inhibit fibroblast-mediated cardiac wound healing. JCl Insight, 2017, 2, .	2.3	55
20	Guidelines for in vivo mouse models of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1056-H1073.	1.5	53
21	Early matrix metalloproteinase-9 inhibition post-myocardial infarction worsens cardiac dysfunction by delaying inflammation resolution. Journal of Molecular and Cellular Cardiology, 2016, 100, 109-117.	0.9	52
22	Plasma Glycoproteomics Reveals Sepsis Outcomes Linked to Distinct Proteins in Common Pathways*. Critical Care Medicine, 2015, 43, 2049-2058.	0.4	46
23	Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clinica Chimica Acta, 2020, 503, 145-150.	0.5	43
24	P. gingivalis lipopolysaccharide intensifies inflammation post-myocardial infarction through matrix metalloproteinase-9. Journal of Molecular and Cellular Cardiology, 2014, 76, 218-226.	0.9	41
25	Proteomic analysis of the cardiac extracellular matrix: clinical research applications. Expert Review of Proteomics, 2018, 15, 105-112.	1.3	40
26	Helix Formation in a Pentapeptide: Experiment and Force-field Dependent Dynamics. Journal of Physical Chemistry A, 2010, 114, 12391-12402.	1.1	39
27	Knowledge gaps to understanding cardiac macrophage polarization following myocardial infarction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2288-2292.	1.8	39
28	Citrate Synthase Is a Novel <i>In Vivo</i> Matrix Metalloproteinase-9 Substrate That Regulates Mitochondrial Function in the Postmyocardial Infarction Left Ventricle. Antioxidants and Redox Signaling, 2014, 21, 1974-1985.	2.5	38
29	The circular relationship between matrix metalloproteinaseâ€9 and inflammation following myocardial infarction. IUBMB Life, 2015, 67, 611-618.	1.5	38
30	Exogenous IL-4 shuts off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to induce neutrophil phagocytosis following myocardial infarction. Journal of Molecular and Cellular Cardiology, 2020, 145, 112-121.	0.9	38
31	CirculatingPorphyromonas gingivalislipopolysaccharide resets cardiac homeostasis in mice through a matrix metalloproteinase-9-dependent mechanism. Physiological Reports, 2013, 1, e00079.	0.7	37
32	Exogenous CXCL4 infusion inhibits macrophage phagocytosis by limiting CD36 signalling to enhance post-myocardial infarction cardiac dilation and mortality. Cardiovascular Research, 2019, 115, 395-408.	1.8	36
33	Immune regulation of cardiac fibrosis post myocardial infarction. Cellular Signalling, 2021, 77, 109837.	1.7	31
34	Reperfused vs. nonreperfused myocardial infarction: when to use which model. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H208-H213.	1.5	29
35	Cardiac extracellular proteome profiling and membrane topology analysis using glycoproteomics. Proteomics - Clinical Applications, 2014, 8, 595-602.	0.8	27
36	Defining the sham environment for post-myocardial infarction studies in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H822-H836.	1.5	27

#	Article	IF	CITATIONS
37	T-cell regulation of fibroblasts and cardiac fibrosis. Matrix Biology, 2020, 91-92, 167-175.	1.5	26
38	Adaptive immunity-driven inflammation and cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1254-H1257.	1.5	21
39	Multicellular Human Cardiac Organoids Transcriptomically Model Distinct Tissue-Level Features of Adult Myocardium. International Journal of Molecular Sciences, 2021, 22, 8482.	1.8	20
40	Chronic <i>Porphyromonas gingivalis</i> lipopolysaccharide induces adverse myocardial infarction wound healing through activation of CD8 ⁺ T cells. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H948-H962.	1.5	15
41	The Mouse Heart Attack Research Tool 1.0 database. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H522-H530.	1.5	14
42	Differential effects of low-dose sacubitril and/or valsartan on renal disease in salt-sensitive hypertension. American Journal of Physiology - Renal Physiology, 2020, 319, F63-F75.	1.3	12
43	May the fibrosis be with you: Is discoidin domain receptor 2 the receptor we have been looking for?. Journal of Molecular and Cellular Cardiology, 2016, 91, 201-203.	0.9	11
44	Regulation of mitochondria function by natriuretic peptides. American Journal of Physiology - Renal Physiology, 2019, 317, F1164-F1168.	1.3	11
45	Organized Chaos: Deciphering Immune Cell Heterogeneity's Role in Inflammation in the Heart. Biomolecules, 2022, 12, 11.	1.8	11
46	Glycoproteomic Profiling Provides Candidate Myocardial Infarction Predictors of Later Progression to Heart Failure. ACS Omega, 2019, 4, 1272-1280.	1.6	10
47	Cross Talk Between Inflammation and Extracellular Matrix Following Myocardial Infarction. , 2015, , 67-79.		9
48	Structure and reorientational dynamics of angiotensin I and II: a microscopic physical insight. Journal of Biomolecular Structure and Dynamics, 2012, 29, 1175-1194.	2.0	8
49	Extracellular Matrix Proteomics in Cardiac Ischemia/Reperfusion. Circulation, 2012, 125, 746-748.	1.6	8
50	Somewhere over the sex differences rainbow of myocardial infarction remodeling: hormones, chromosomes, inflammasome, oh my. Expert Review of Proteomics, 2019, 16, 933-940.	1.3	8
51	Identifying the molecular and cellular signature of cardiac dilation following myocardial infarction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1845-1852.	1.8	6
52	Cardiac aging: Send in the vinculin reinforcements. Science Translational Medicine, 2015, 7, 292fs26.	5.8	4
53	An Offer We Cannot Refuse: Cell-Free DNA as a Novel Biomarker of Myocardial Infarction. American Journal of the Medical Sciences, 2018, 356, 88-89.	0.4	4
54	Focusing Heart Failure Research on Myocardial Fibrosis to Prioritize Translation. Journal of Cardiac Failure, 2020, 26, 876-884.	0.7	4

#	Article	IF	CITATIONS
55	Modifying matrix remodeling to prevent heart failure. , 2014, , 41-60.		2
56	43Matrix metalloproteinase-9 deletion shifts macrophage polarization towards M2 phenotype in aged left ventricles post-myocardial infarction. Cardiovascular Research, 2014, 103, S6.3-S6.	1.8	2
57	Extracellular Matrix Biomarkers of Adverse Remodeling After Myocardial Infarction. , 2013, , 383-412.		2
58	Riding the wave: a quantitative report of electrocardiogram utilization for myocardial infarction confirmation. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H378-H387.	1.5	2
59	Women are different: the role of coupling factor 6 in blood pressure regulation. Hypertension Research, 2012, 35, 485-486.	1.5	0
60	Exogenous CXCL4 Infusion Inhibits Macrophage Phagocytosis by Limiting CD36 Signaling to Enhance Post-myocardial Infarction Cardiac Dilation. Journal of Molecular and Cellular Cardiology, 2018, 124, 101-102.	0.9	0
61	Iron overload: what's TIMP-3 got to do with it. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1259-H1261.	1.5	0
62	Molecular, Gene, and Cellular Mechanism. , 2021, , 1-10.		0
63	Using EKG to Confirm MI in Mouse Model of Permanent Left Anterior Descending Coronary Artery. FASEB Journal, 2021, 35, .	0.2	0
64	Find the stimulus, save the heart: a heroes' story. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H2185-H2187.	1.5	0
65	Collagen Câ€peptide roles in postâ€myocardial infarction remodeling (867.15). FASEB Journal, 2014, 28, 867.15.	0.2	0
66	Systemic Porphyromonas gingivalis lipopolysaccharide exacerbates the inflammatory response postâ€myocardial infarction through matrix metalloproteinaseâ€9 (897.6). FASEB Journal, 2014, 28, 897.6.	0.2	0
67	The Mouse Heart Attack Research Tool (mHART) 1.0 Database. FASEB Journal, 2018, 32, 848.5.	0.2	0
68	CD8 Tâ€cells have a biphasic role during postâ€myocardial infarction cardiac remodeling. FASEB Journal, 2018, 32, 718.5.	0.2	0
69	Day 1 Postâ€Myocardial Infarction Cardiac Macrophage Transcriptomic Signatures that Link to LV Infarct Wall Thinning. FASEB Journal, 2018, 32, 717.11.	0.2	0
70	CD8 Tâ€eells regulate macrophage recruitment leading to exacerbated cardiac remodeling. FASEB Journal, 2019, 33, 836.4.	0.2	0
71	The Secretome of Female CD8+ T ells Increases Monocyte Phagocytosis. FASEB Journal, 2020, 34, 1-1.	0.2	0
72	Exogenous ILâ€4 Promotes Myocardial Infarction Repair by Turning off Proâ€Inflammation in Neutrophils while Stimulating Antiâ€Inflammation in Macrophages to Induce Neutrophil Phagocytosis. FASEB Journal, 2020, 34, 1-1.	0.2	0

#	Article	IF	CITATIONS
73	Abstract 486: Chronic Periodontitis Induces Adverse Post-myocardial Wound Healing Through Activation of CD8+ T-cells. Circulation Research, 2020, 127, .	2.0	Ο
74	Editorial: Role of Molecular Modulators in Combatting Cardiac Injury and Disease: Prevention, Repair and Regeneration. Frontiers in Cardiovascular Medicine, 2022, 9, 861442.	1.1	0
75	Novel and Effective: ECG Utilization for MI Confirmation in Mouse Models. FASEB Journal, 2022, 36, .	0.2	Ο
76	Innateâ€like Tâ€cells correlate with functional changes postâ€myocardial infarction. FASEB Journal, 2022, 36, .	0.2	0