
Jiangjiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7011825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulating the catalytic activity of gold nanoparticles using amine-terminated ligands. Chemical Science, 2022, 13, 1080-1087.	3.7	16
2	Boronic Acid-Decorated Multivariate Photosensitive Metal–Organic Frameworks for Combating Multi-Drug-Resistant Bacteria. ACS Nano, 2022, 16, 7732-7744.	7.3	42
3	Reversing Bacterial Resistance to Gold Nanoparticles by Size Modulation. Nano Letters, 2021, 21, 1992-2000.	4.5	46
4	Efficient Killing of Multidrugâ€Resistant Internalized Bacteria by AlEgens In Vivo. Advanced Science, 2021, 8, 2001750.	5.6	49
5	Nanoscale Metal–Organic Frameworks That are Both Fluorescent and Hollow for Self-Indicating Drug Delivery. ACS Applied Materials & Interfaces, 2021, 13, 18554-18562.	4.0	15
6	Four-in-One: Advanced Copper Nanocomposites for Multianalyte Assays and Multicoding Logic Gates. ACS Nano, 2020, 14, 9107-9116.	7.3	10
7	Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. ACS Nano, 2020, 14, 16840-16853.	7.3	72
8	Activating the Antibacterial Effect of 4,6â€Diaminoâ€2â€pyrimidinethiolâ€Modified Gold Nanoparticles by Reducing their Sizes. Angewandte Chemie - International Edition, 2020, 59, 23471-23475.	7.2	44
9	Activating the Antibacterial Effect of 4,6â€Diaminoâ€2â€pyrimidinethiolâ€Modified Gold Nanoparticles by Reducing their Sizes. Angewandte Chemie, 2020, 132, 23677-23681.	1.6	9
10	Titanium Incorporation into Zrâ€Porphyrinic Metal–Organic Frameworks with Enhanced Antibacterial Activity against Multidrugâ€Resistant Pathogens. Small, 2020, 16, e1906240.	5.2	116
11	Surface chemistry of gold nanoparticles for health-related applications. Chemical Science, 2020, 11, 923-936.	3.7	191
12	Killing G(+) or G(â^') Bacteria? The Important Role of Molecular Charge in AlEâ€Active Photosensitizers. Small Methods, 2020, 4, 2000046.	4.6	114
13	Tripleâ€Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases. Angewandte Chemie, 2019, 131, 12534-12538.	1.6	13
14	Tripleâ€Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases. Angewandte Chemie - International Edition, 2019, 58, 12404-12408.	7.2	107
15	Hierarchically structured microchip for point-of-care immunoassays with dynamic detection ranges. Lab on A Chip, 2019, 19, 2750-2757.	3.1	28
16	A hinge-based aligner for fast, large-scale assembly of microfluidic chips. Biomedical Microdevices, 2019, 21, 69.	1.4	8
17	Rapid Detection of Copper in Biological Systems Using Click Chemistry. Small, 2018, 14, e1703857.	5.2	39
18	T ₁ -Mediated Nanosensor for Immunoassay Based on an Activatable MnO ₂ Nanoassembly. Analytical Chemistry, 2018, 90, 2765-2771.	3.2	21

JIANGJIANG ZHANG

#	Article	IF	CITATIONS
19	Cascade Reaction-Mediated Assembly of Magnetic/Silver Nanoparticles for Amplified Magnetic Biosensing. Analytical Chemistry, 2018, 90, 6906-6912.	3.2	48
20	Hydrogels Incorporating Au@Polydopamine Nanoparticles: Robust Performance for Optical Sensing. Analytical Chemistry, 2018, 90, 11423-11430.	3.2	52
21	A Bifunctional Aggregationâ€Induced Emission Luminogen for Monitoring and Killing of Multidrugâ€Resistant Bacteria. Advanced Functional Materials, 2018, 28, 1804632.	7.8	105
22	Ag ⁺ â€Gated Surface Chemistry of Gold Nanoparticles and Colorimetric Detection of Acetylcholinesterase. Small, 2018, 14, e1801680.	5.2	47
23	Indole Derivative-Capped Gold Nanoparticles as an Effective Bactericide in Vivo. ACS Applied Materials & Interfaces, 2018, 10, 29398-29406.	4.0	78
24	Mixing-to-Answer lodide Sensing with Commercial Chemicals. Analytical Chemistry, 2018, 90, 8276-8282.	3.2	17
25	Nanocrystalline cellulose mediated seed-growth for ultra-robust colorimetric detection of hydrogen sulfide. Nanoscale, 2017, 9, 9811-9817.	2.8	28
26	Composites of Bacterial Cellulose and Small Molecule-Decorated Gold Nanoparticles for Treating Gram-Negative Bacteria-Infected Wounds. Small, 2017, 13, 1700130.	5.2	119
27	CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy. Biosensors and Bioelectronics, 2016, 81, 207-213.	5.3	20
28	Sensitive colorimetric assays for α-glucosidase activity and inhibitor screening based on unmodified gold nanoparticles. Analytica Chimica Acta, 2015, 875, 92-98.	2.6	40
29	Visual determination of aliphatic diamines based on host–guest recognition of calix[4]arene derivatives capped gold nanoparticles. Biosensors and Bioelectronics, 2015, 72, 306-312.	5.3	25
30	Sensitive cell apoptosis assay based on caspase-3 activity detection with graphene oxide-assisted electrochemical signal amplification. Biosensors and Bioelectronics, 2015, 68, 777-782.	5.3	60
31	Sensitive detection of copper(<scp>ii</scp>) ions based on the conformational change of peptides by surface plasmon resonance spectroscopy. Analytical Methods, 2015, 7, 8942-8946.	1.3	22
32	Colorimetric copper(<scp>ii</scp>) ion sensor based on the conformational change of peptide immobilized onto the surface of gold nanoparticles. Analytical Methods, 2014, 6, 2580-2585.	1.3	44
33	Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance. Biosensors and Bioelectronics, 2014, 61, 83-87.	5.3	86