Susan A Bernal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7011740/publications.pdf Version: 2024-02-01

SUSAN A REDNAL

#	Article	IF	CITATIONS
1	Geopolymers and Related Alkali-Activated Materials. Annual Review of Materials Research, 2014, 44, 299-327.	9.3	908
2	Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 2014, 45, 125-135.	10.7	806
3	Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cement and Concrete Research, 2013, 53, 127-144.	11.0	593
4	Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 2019, 122, 257-273.	11.0	521
5	Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement and Concrete Composites, 2011, 33, 46-54.	10.7	513
6	Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Construction and Building Materials, 2013, 48, 1187-1201.	7.2	390
7	Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model. Langmuir, 2013, 29, 5294-5306.	3.5	383
8	Effect of binder content on the performance of alkali-activated slag concretes. Cement and Concrete Research, 2011, 41, 1-8.	11.0	370
9	Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research, 2010, 40, 898-907.	11.0	341
10	MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cement and Concrete Research, 2014, 57, 33-43.	11.0	334
11	Durability of Alkaliâ€Activated Materials: Progress and Perspectives. Journal of the American Ceramic Society, 2014, 97, 997-1008.	3.8	320
12	Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. Journal of Materials Science, 2011, 46, 5477-5486.	3.7	306
13	Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Construction and Building Materials, 2012, 33, 99-108.	7.2	304
14	Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Materials and Structures/Materiaux Et Constructions, 2013, 46, 361-373.	3.1	270
15	Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: The role of pore solution chemistry. Cement and Concrete Research, 2012, 42, 1317-1326.	11.0	247
16	Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag. Cement and Concrete Research, 2015, 74, 78-87.	11.0	234
17	Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement. Cement and Concrete Research, 2017, 100, 1-13.	11.0	224
18	Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement and Concrete Research, 2016, 81, 24-37.	11.0	213

#	Article	IF	CITATIONS
19	Advances in alkali-activation of clay minerals. Cement and Concrete Research, 2020, 132, 106050.	11.0	201
20	A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation. Cement and Concrete Research, 2014, 66, 27-47.	11.0	186
21	Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures/Materiaux Et Constructions, 2015, 48, 517-529.	3.1	186
22	Oneâ€Part Geopolymers Based on Thermally Treated Red Mud/NaOH Blends. Journal of the American Ceramic Society, 2015, 98, 5-11.	3.8	184
23	The Role of Al in Crossâ€Linking of Alkaliâ€Activated Slag Cements. Journal of the American Ceramic Society, 2015, 98, 996-1004.	3.8	181
24	Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash. Waste and Biomass Valorization, 2012, 3, 99-108.	3.4	168
25	Thermodynamic modelling of alkali-activated slag cements. Applied Geochemistry, 2015, 61, 233-247.	3.0	160
26	Phase diagrams for alkali-activated slag binders. Cement and Concrete Research, 2017, 95, 30-38.	11.0	155
27	Drying-induced changes in the structure of alkali-activated pastes. Journal of Materials Science, 2013, 48, 3566-3577.	3.7	150
28	Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes. Construction and Building Materials, 2014, 61, 79-89.	7.2	148
29	Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes. Cement and Concrete Research, 2017, 100, 385-397.	11.0	148
30	Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites, 2013, 35, 1-11.	10.7	142
31	Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. Journal of Cleaner Production, 2017, 166, 680-689.	9.3	132
32	Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	123
33	Management and valorisation of wastes through use in producing alkaliâ€activated cement materials. Journal of Chemical Technology and Biotechnology, 2016, 91, 2365-2388.	3.2	121
34	Structural evolution of an alkali sulfate activated slag cement. Journal of Nuclear Materials, 2016, 468, 97-104.	2.7	118
35	Natural carbonation of aged alkali-activated slag concretes. Materials and Structures/Materiaux Et Constructions, 2014, 47, 693-707.	3.1	114
36	Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Composites Part B: Engineering, 2012, 43, 1919-1928.	12.0	111

#	Article	IF	CITATIONS
37	Structure and properties of binder gels formed in the system Mg(OH) ₂ –SiO ₂ –H ₂ O for immobilisation of Magnox sludge. Dalton Transactions, 2015, 44, 8126-8137.	3.3	102
38	Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	101
39	Determination of particle size, surface area, and shape of supplementary cementitious materials by different techniques. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3687-3701.	3.1	95
40	Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials. Construction and Building Materials, 2015, 98, 217-226.	7.2	92
41	Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge. Construction and Building Materials, 2016, 122, 373-383.	7.2	91
42	Performance of alkali-activated slag mortars exposed to acids. Journal of Sustainable Cement-Based Materials, 2012, 1, 138-151.	3.1	90
43	Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes. Materials and Structures/Materiaux Et Constructions, 2017, 50, 235.	3.1	88
44	Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements. Construction and Building Materials, 2018, 172, 533-543.	7.2	84
45	Distinctive microstructural features of aged sodium silicate-activated slag concretes. Cement and Concrete Research, 2014, 65, 41-51.	11.0	80
46	Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions. Materials and Structures/Materiaux Et Constructions, 2015, 48, 653-669.	3.1	79
47	Highâ€Resolution <scp>X</scp> â€ray Diffraction and Fluorescence Microscopy Characterization of Alkaliâ€Activated Slagâ€Metakaolin Binders. Journal of the American Ceramic Society, 2013, 96, 1951-1957.	3.8	79
48	Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator. Advances in Cement Research, 2016, 28, 262-273.	1.6	78
49	Valorisation of a kaolin mining waste for the production of geopolymers. Journal of Cleaner Production, 2016, 115, 265-272.	9.3	75
50	Structural evolution of synthetic alkali-activated CaO-MgO-Na 2 O-Al 2 O 3 -SiO 2 materials is influenced by Mg content. Cement and Concrete Research, 2017, 99, 155-171.	11.0	73
51	Durability of steel fibre reinforced rubberised concrete exposed to chlorides. Construction and Building Materials, 2018, 188, 130-142.	7.2	71
52	Incorporation of strontium and calcium in geopolymer gels. Journal of Hazardous Materials, 2020, 382, 121015.	12.4	71
53	Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	71
54	High-Resolution Nanoprobe X-ray Fluorescence Characterization of Heterogeneous Calcium and Heavy Metal Distributions in Alkali-Activated Fly Ash. Langmuir, 2009, 25, 11897-11904.	3.5	66

#	Article	IF	CITATIONS
55	Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 2013, 109, 493-502.	6.4	66
56	Freeze-thaw resistance of steel fibre reinforced rubberised concrete. Construction and Building Materials, 2019, 195, 450-458.	7.2	65
57	Characterization of supplementary cementitious materials by thermal analysis. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	64
58	Dilatometry of geopolymers as a means of selecting desirable fly ash sources. Journal of Non-Crystalline Solids, 2012, 358, 1930-1937.	3.1	63
59	Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Materiales De Construccion, 2015, 65, e049.	0.7	60
60	Microstructure and durability of alkali-activated materials as key parameters for standardization. Journal of Sustainable Cement-Based Materials, 2015, 4, 116-128.	3.1	59
61	Thermodynamic modelling of phase evolution in alkali-activated slag cements exposed to carbon dioxide. Cement and Concrete Research, 2020, 136, 106158.	11.0	56
62	Circular Economy strategies for concrete: implementation and integration. Journal of Cleaner Production, 2022, 362, 132486.	9.3	54
63	RILEM TC 247-DTA round robin test: mix design and reproducibility of compressive strength of alkali-activated concretes. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	3.1	53
64	Chloride binding and mobility in sodium carbonate-activated slag pastes and mortars. Materials and Structures/Materiaux Et Constructions, 2017, 50, 252.	3.1	52
65	RILEM TC 247-DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	51
66	Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cements. Sustainability, 2018, 10, 4709.	3.2	47
67	Alkali-activation potential of biomass-coal co-fired fly ash. Cement and Concrete Composites, 2016, 73, 62-74.	10.7	46
68	Influence of slag composition on the stability of steel in alkali-activated cementitious materials. Journal of Materials Science, 2018, 53, 5016-5035.	3.7	45
69	Steel corrosion in reinforced alkali-activated materials. RILEM Technical Letters, 0, 2, 33-39.	0.0	42
70	Binder Chemistry – High-Calcium Alkali-Activated Materials. RILEM State-of-the-Art Reports, 2014, , 59-91.	0.7	41
71	Physical characterization methods for supplementary cementitious materials. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3675-3686.	3.1	40
72	Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders. Cement and Concrete Research, 2015, 70, 21-28.	11.0	39

#	Article	IF	CITATIONS
73	Slag-Based Cements That Resist Damage Induced by Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 5067-5075.	6.7	39
74	Characterisation of Ba(OH)2–Na2SO4–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes. Cement and Concrete Research, 2014, 66, 64-74.	11.0	38
75	Blast furnace slag-Mg(OH) ₂ cements activated by sodium carbonate. RSC Advances, 2018, 8, 23101-23118.	3.6	38
76	The fate of iron in blast furnace slag particles during alkali-activation. Materials Chemistry and Physics, 2014, 146, 1-5.	4.0	36
77	Desempeño a temperaturas altas de morteros y hormigones basados en mezclas de escoria/metacaolÃn activadas alcalinamente. Materiales De Construccion, 2012, 62, 471-488.	0.7	35
78	Nanostructural characterization of geopolymers by advanced beamline techniques. Cement and Concrete Composites, 2013, 36, 56-64.	10.7	33
79	RILEM TC 247-DTA round robin test: sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkali-activated concretes. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	30
80	Characterization of and Structural Insight into Struvite-K, MgKPO ₄ ·6H ₂ O, an Analogue of Struvite. Inorganic Chemistry, 2021, 60, 195-205.	4.0	29
81	Report of RILEM TC 267-TRM phase 2: optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materials. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	29
82	Gamma irradiation resistance of an early age slag-blended cement matrix for nuclear waste encapsulation. Journal of Materials Research, 2015, 30, 1563-1571.	2.6	26
83	Binder Chemistry – Blended Systems and Intermediate Ca Content. RILEM State-of-the-Art Reports, 2014, , 125-144.	0.7	26
84	Structure of Portland Cement Pastes Blended with Sonicated Silica Fume. Journal of Materials in Civil Engineering, 2012, 24, 1295-1304.	2.9	25
85	Alkali aluminosilicate geopolymers as binders to encapsulate strontium-selective titanate ion-exchangers. Dalton Transactions, 2019, 48, 12116-12126.	3.3	25
86	Exploiting in-situ solid-state NMR spectroscopy to probe the early stages of hydration of calcium aluminate cement. Solid State Nuclear Magnetic Resonance, 2019, 99, 1-6.	2.3	25
87	Temperature transformation of blended magnesium potassium phosphate cement binders. Cement and Concrete Research, 2021, 141, 106332.	11.0	25
88	Activator Anion Influences the Nanostructure of Alkali-Activated Slag Cements. Journal of Physical Chemistry C, 2021, 125, 20727-20739.	3.1	23
89	Modelling chloride transport in alkali-activated slags. Cement and Concrete Research, 2020, 130, 106011.	11.0	20
90	Microstructural Changes Induced by CO2 Exposure in Alkali-Activated Slag/Metakaolin Pastes. Frontiers in Materials, 2016, 3, .	2.4	18

6

#	Article	IF	CITATIONS
91	Response to the discussion by Hongyan Ma and Ying Li of the paper "Characterization of magnesium potassium phosphate cement blended with fly ash and ground granulated blast furnace slagâ€. Cement and Concrete Research, 2018, 103, 249-253.	11.0	18
92	Thermodynamic modelling of BFS-PC cements under temperature conditions relevant to the geological disposal of nuclear wastes. Cement and Concrete Research, 2019, 119, 21-35.	11.0	17
93	Milestones in the analysis of alkali-activated binders. Journal of Sustainable Cement-Based Materials, 2015, 4, 74-84.	3.1	15
94	Alternative inorganic binders based on alkali-activated metallurgical slags. , 2017, , 185-220.		15
95	Gamma irradiation resistance of early age Ba(OH)2-Na2SO4-slag cementitious grouts. Journal of Nuclear Materials, 2016, 482, 266-277.	2.7	13
96	Phase evolution of slag-rich cementitious grouts for immobilisation of nuclear wastes. Advances in Cement Research, 2018, 30, 345-360.	1.6	13
97	Phase Formation and Evolution in Mg(OH) ₂ –Zeolite Cements. Industrial & Engineering Chemistry Research, 2018, 57, 2105-2113.	3.7	12
98	Durability and Testing – Degradation via Mass Transport. RILEM State-of-the-Art Reports, 2014, , 223-276.	0.7	12
99	Other Potential Applications for Alkali-Activated Materials. RILEM State-of-the-Art Reports, 2014, , 339-379.	0.7	11
100	Development, Standardization, and Applications of Alkali-activated Concretes. , 2013, , 196-212.		9
101	Layered double hydroxides modify the reaction of sodium silicate-activated slag cements. Green Materials, 2019, 7, 52-60.	2.1	8
102	Applicability discussion for multi-peak Gaussian model of corrosion layer at steel/concrete interfaces. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	6
103	Durability and Testing – Chemical Matrix Degradation Processes. RILEM State-of-the-Art Reports, 2014, , 177-221.	0.7	6
104	What Happens to 5 Year Old Metakaolin Geopolymers' the Effect of Alkali Cation. RILEM Bookseries, 2015, , 315-321.	0.4	5
105	Advances in near-neutral salts activation of blast furnace slags. RILEM Technical Letters, 0, 1, 39.	0.0	5
106	Bubble stabilisation improves strength of lightweight mortars. Proceedings of Institution of Civil Engineers: Construction Materials, 2017, 170, 134-140.	1.1	4
107	Binary alkali-activated systems obtained by the valorisation of calcined kaolin sludge and bottom ash. Advances in Cement Research, 2022, 34, 67-79.	1.6	4
108	Time-resolved 3D characterisation of early-age microstructural development of Portland cement. Journal of Materials Science, 2022, 57, 4952-4969.	3.7	4

#	Article	IF	CITATIONS
109	Structural Ordering of Aged and Hydrothermally Cured Metakaolin Based Potassium Geopolymers. RILEM Bookseries, 2018, , 232-237.	0.4	2
110	Comment on E. Prud'Homme et al., "Structural characterization of geomaterial foams — Thermal behaviorâ€, J. Non-Cryst. Solids, 2011. Journal of Non-Crystalline Solids, 2012, 358, 715-716.	3.1	1
111	Editorial introduction – Journal of Sustainable Cement-Based Materials special issue on chemically activated materials. Journal of Sustainable Cement-Based Materials, 2015, 4, 73-73.	3.1	0