
Christopher J Costello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7011494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SubsidyExplorer: A decision-support tool to improve our understanding of the ecological and economic effects of reforming fisheries subsidies. PLoS ONE, 2022, 17, e0265829.	1.1	1
2	Limitedâ€ŧenure concessions for collective goods. Journal of Economic Dynamics and Control, 2022, , 104484.	0.9	0
3	Assessing the drivers of vessel tracking systems adoption for improved small-scale fisheries management. Ocean and Coastal Management, 2022, 226, 106265.	2.0	3
4	Ambitious subsidy reform by the WTO presents opportunities for ocean health restoration. Sustainability Science, 2021, 16, 1391-1396.	2.5	8
5	The long and narrow path for novel cellâ€based seafood to reduce fishing pressure for marine ecosystem recovery. Fish and Fisheries, 2021, 22, 652-664.	2.7	19
6	Protecting the global ocean for biodiversity, food and climate. Nature, 2021, 592, 397-402.	13.7	359
7	Reply to Hilborn: We agree that MPAs can improve fish catch in the South and Southeast Asia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2100660118.	3.3	0
8	Reply to Swartz et al.: Challenges and opportunities for identifying forced labor using satellite-based fishing vessel monitoring. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2104563118.	3.3	1
9	Reply to Ovando et al.: How connected are global fisheries?. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2100364118.	3.3	1
10	Transboundary marine protected areas. Resources and Energy Economics, 2021, 65, 101239.	1.1	7
11	Satellites can reveal global extent of forced labor in the world's fishing fleet. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
12	Environmental market design for large-scale marine conservation. Nature Sustainability, 2020, 3, 234-240.	11.5	11
13	Boundary spanning among research and policy communities to address the emerging industrial revolution in the ocean. Environmental Science and Policy, 2020, 104, 73-81.	2.4	13
14	A global network of marine protected areas for food. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28134-28139.	3.3	56
15	The future of food from the sea. Nature, 2020, 588, 95-100.	13.7	403
16	Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE, 2020, 15, e0224347.	1.1	66
17	Opportunities for agentâ€based modelling in human dimensions of fisheries. Fish and Fisheries, 2020, 21, 570-587.	2.7	16
18	Strategically designed marine reserve networks are robust to climate change driven shifts in population connectivity. Environmental Research Letters, 2020, 15, 034030.	2.2	13

CHRISTOPHER J COSTELLO

#	Article	IF	CITATIONS
19	Governance challenges for tropical nations losing fish species due to climate change. Nature Sustainability, 2020, 3, 277-280.	11.5	47
20	Effective fisheries management instrumental in improving fish stock status. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2218-2224.	3.3	434
21	The blue paradox: Preemptive overfishing in marine reserves. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5319-5325.	3.3	45
22	Status, Institutions, and Prospects for Global Capture Fisheries. Annual Review of Environment and Resources, 2019, 44, 177-200.	5.6	31
23	Spatial Renewable Resource Extraction under Possible Regime Shift. American Journal of Agricultural Economics, 2019, 101, 507-527.	2.4	8
24	Designing MPAs for food security in open-access fisheries. Scientific Reports, 2019, 9, 8033.	1.6	31
25	Optimal harvest responses to environmental forecasts depend on resource knowledge and how it can be used. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 1495-1502.	0.7	2
26	Expanding Water Markets in the Western United States: Barriers and Lessons from Other Natural Resource Markets. Review of Environmental Economics and Policy, 2019, 13, 43-61.	3.1	32
27	Designing freshwater protected areas (FPAs) for indiscriminate fisheries. Ecological Modelling, 2019, 393, 127-134.	1.2	32
28	Tracking the global footprint of fisheries. Science, 2018, 359, 904-908.	6.0	687
29	Property Rights, Regulatory Capture, and Exploitation of Natural Resources. Journal of the Association of Environmental and Resource Economists, 2018, 5, 441-479.	1.0	21
30	Adaptive comanagement to achieve climateâ€ready fisheries. Conservation Letters, 2018, 11, e12452.	2.8	42
31	Protecting marine mammals, turtles, and birds by rebuilding global fisheries. Science, 2018, 359, 1255-1258.	6.0	34
32	Rapid and lasting gains from solving illegal fishing. Nature Ecology and Evolution, 2018, 2, 650-658.	3.4	85
33	Five rules for pragmatic blue growth. Marine Policy, 2018, 87, 331-339.	1.5	78
34	Natural Resource Federalism: Preferences Versus Connectivity for Patchy Resources. Environmental and Resource Economics, 2018, 71, 99-126.	1.5	4
35	The cost of management delay: The case for reforming Mexican fisheries sooner rather than later. Marine Policy, 2018, 88, 1-10.	1.5	16
36	Reply to Hanich et al.: Alternate explanations for the blue paradox do not withstand statistical scrutiny. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12124-E12125.	3.3	2

#	Article	IF	CITATIONS
37	Maximizing the impact of climate finance: Funding projects or pilot projects?. Journal of Environmental Economics and Management, 2018, 92, 270-281.	2.1	16
38	Are fishery management upgrades worth the cost?. PLoS ONE, 2018, 13, e0204258.	1.1	34
39	Does Climate Change Bolster the Case for Fishery Reform in Asia?. Asian Development Review, 2018, 35, 31-57.	0.8	1
40	Improved fisheries management could offset many negative effects of climate change. Science Advances, 2018, 4, eaao1378.	4.7	168
41	Reply to â€~Achieving sustainable and equitable fisheries requires nuanced policies not silver bullets'. Nature Ecology and Evolution, 2018, 2, 1335-1335.	3.4	0
42	The economics of fishing the high seas. Science Advances, 2018, 4, eaat2504.	4.7	185
43	A user-friendly tool to evaluate the effectiveness of no-take marine reserves. PLoS ONE, 2018, 13, e0191821.	1.1	18
44	Fish harder; catch more?. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1442-1444.	3.3	16
45	Describing ecosystem contexts with singleâ€species models: a theoretical synthesis for fisheries. Fish and Fisheries, 2017, 18, 264-284.	2.7	11
46	Private eradication of mobile public bads. European Economic Review, 2017, 94, 23-44.	1.2	28
47	A decision support tool for designing TURF-reserves. Bulletin of Marine Science, 2017, 93, 155-172.	0.4	8
48	High fishery catches through trophic cascades in China. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 717-721.	3.3	116
49	Marine reserves solve an important bycatch problem in fisheries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8927-8934.	3.3	45
50	To what extent can ecosystem services motivate protecting biodiversity?. Ecology Letters, 2017, 20, 935-946.	3.0	45
51	PRIVATE CONSERVATION IN TURFâ€MANAGED FISHERIES. Natural Resource Modelling, 2017, 30, 30-51.	0.8	5
52	Unexpected Management Choices When Accounting for Uncertainty in Ecosystem Service Tradeoff Analyses. Conservation Letters, 2017, 10, 422-430.	2.8	16
53	Opportunities and precautions for integrating cooperation and individual transferable quotas with territorial use rights in fisheries. Bulletin of Marine Science, 2017, 93, 101-115.	0.4	3
54	Reply to Hilborn: Role of marine reserves depends on assumptions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10611.	3.3	1

CHRISTOPHER J COSTELLO

#	Article	IF	CITATIONS
55	Distributional Effects of the Transition to Property Rights for a Common-Pool Resource. Marine Resource Economics, 2016, 31, 1-26.	1.1	40
56	Fish banks: An economic model to scale marine conservation. Marine Policy, 2016, 73, 154-161.	1.5	29
57	Global fishery prospects under contrasting management regimes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5125-5129.	3.3	485
58	Designing and financing optimal enforcement for small-scale fisheries and dive tourism industries. Marine Policy, 2016, 67, 105-117.	1.5	12
59	Solutions for Recovering and Sustaining the Bounty of the Ocean: Combining Fishery Reforms, Rights-Based Fisheries Management, and Marine Reserves. Oceanography, 2015, 25, 252-263.	0.5	44
60	Partial enclosure of the commons. Journal of Public Economics, 2015, 121, 69-78.	2.2	22
61	Close the High Seas to Fishing?. PLoS Biology, 2014, 12, e1001826.	2.6	88
62	Integrating scientific guidance into marine spatial planning. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132252.	1.2	53
63	Removing biases in forecasts of fishery status. Journal of Bioeconomics, 2014, 16, 213-219.	1.5	5
64	Repeated Experimentation to Learn About a Flow-Pollutant Threshold. Environmental and Resource Economics, 2014, 58, 627-647.	1.5	9
65	Capitalizing property rights insecurity in natural resource assets. Journal of Environmental Economics and Management, 2014, 67, 224-240.	2.1	41
66	Conservation markets for wildlife management with case studies from whaling. Ecological Applications, 2014, 24, 4-14.	1.8	9
67	Conservation incentives and collective choices in cooperative fisheries. Marine Policy, 2013, 37, 132-140.	1.5	71
68	Evaluating tradeoffs among ecosystem services to inform marine spatial planning. Marine Policy, 2013, 38, 80-89.	1.5	270
69	A comparison of approaches used for economic analysis in marine protected area network planning in California. Ocean and Coastal Management, 2013, 74, 77-89.	2.0	48
70	Forecasting fisheries collapse. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15859-15860.	3.3	6
71	Reforming Fisheries: Lessons from a Self-Selected Cooperative. Journal of Law and Economics, 2013, 56, 83-125.	0.6	33
72	A General Business Model for Marine Reserves. PLoS ONE, 2013, 8, e58799.	1.1	95

#	Article	IF	CITATIONS
73	A market approach to saving the whales. Nature, 2012, 481, 139-140.	13.7	28
74	Introduction to the Symposium on Rights-Based Fisheries Management. Review of Environmental Economics and Policy, 2012, 6, 212-216.	3.1	16
75	Marine protected areas and the value of spatially optimized fishery management. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11884-11889.	3.3	117
76	Status and Solutions for the World's Unassessed Fisheries. Science, 2012, 338, 517-520.	6.0	621
77	Matching spatial property rights fisheries with scales of fish dispersal. , 2011, 21, 350-362.		60
78	Unitization of Spatially Connected Renewable Resources. B E Journal of Economic Analysis and Policy, 2011, 11, .	0.5	16
79	Cost-effective management of invasive species using linear-quadratic control. Ecological Economics, 2010, 69, 519-527.	2.9	76
80	Marine protected areas in spatial propertyâ€rights fisheries*. Australian Journal of Agricultural and Resource Economics, 2010, 54, 321-341.	1.3	45
81	The value of spatial information in MPA network design. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18294-18299.	3.3	90
82	Bounded uncertainty and climate change economics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8108-8110.	3.3	33
83	Economic Incentives and Clobal Fisheries Sustainability. Annual Review of Resource Economics, 2010, 2, 299-318.	1.5	61
84	Science in support of ecosystem-based management for the US West Coast and beyond. Biological Conservation, 2010, 143, 576-587.	1.9	131
85	Evolving science of marine reserves: New developments and emerging research frontiers. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18251-18255.	3.3	146
86	Optimally Managing a Stochastic Renewable Resource under General Economic Conditions. B E Journal of Economic Analysis and Policy, 2009, 9, .	0.5	8
87	Rebuilding Global Fisheries. Science, 2009, 325, 578-585.	6.0	1,722
88	Marine reserve effects on fishery profit. Ecology Letters, 2008, 11, 370-379.	3.0	95
89	Natural resource use with limited-tenure property rights. Journal of Environmental Economics and Management, 2008, 55, 20-36.	2.1	56
90	Optimal harvesting of stochastic spatial resources. Journal of Environmental Economics and Management, 2008, 56, 1-18.	2.1	154

CHRISTOPHER J COSTELLO

#	Article	IF	CITATIONS
91	Can Catch Shares Prevent Fisheries Collapse?. Science, 2008, 321, 1678-1681.	6.0	693
92	EVALUATING AN INVASIVE SPECIES POLICY: BALLAST WATER EXCHANGE IN THE GREAT LAKES. , 2007, 17, 655-662.		47
93	Unintended biological invasions: Does risk vary by trading partner?. Journal of Environmental Economics and Management, 2007, 54, 262-276.	2.1	122
94	The Efficiency Gains from Fully Delineating Rights in an ITQ Fishery. Marine Resource Economics, 2007, 22, 347-361.	1.1	89
95	Search, bioprospecting and biodiversity conservation. Journal of Environmental Economics and Management, 2006, 52, 615-626.	2.1	63
96	Enforcing Emissions Trading when Emissions Permits are Bankable. Journal of Regulatory Economics, 2005, 28, 181-204.	0.8	29
97	Chapter 29 The Economics of Biodiversity. Handbook of Environmental Economics, 2005, , 1517-1560.	0.1	20
98	Fishery management under multiple uncertainty. Journal of Environmental Economics and Management, 2005, 50, 300-318.	2.1	148
99	ESTIMATING THE RATE OF SPECIES INTRODUCTIONS FROM THE DISCOVERY RECORD. Ecology, 2004, 85, 1822-1825.	1.5	41
100	Dynamic reserve site selection. Resources and Energy Economics, 2004, 26, 157-174.	1.1	285
101	Avoiding invasives: trade-related policies for controlling unintentional exotic species introductions. Journal of Environmental Economics and Management, 2004, 48, 954-977.	2.1	144
102	On the pattern of discovery of introduced species. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3321-3323.	3.3	90
103	Protectionism, Trade, and Measures of Damage from Exotic Species Introductions. American Journal of Agricultural Economics, 2003, 85, 964-975.	2.4	125
104	Renewable resource management with environmental prediction. Canadian Journal of Economics, 2001, 34, 196-211.	0.6	47
105	A TEST FOR DECLINING DIVERSITY. Ecology, 2001, 82, 2370-2372.	1.5	2
106	The Value of El Niño Forecasts in the Management of Salmon: A Stochastic Dynamic Assessment. American Journal of Agricultural Economics, 1998, 80, 765-777.	2.4	96