List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7011458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification. Physical Review Letters, 2009, 102, 173601.	7.8	611
2	<i>Colloquium</i> : Understanding quantum weak values: Basics and applications. Reviews of Modern Physics, 2014, 86, 307-316.	45.6	478
3	Thermoelectric energy harvesting with quantum dots. Nanotechnology, 2015, 26, 032001.	2.6	254
4	Weak Values and the Leggett-Garg Inequality in Solid-State Qubits. Physical Review Letters, 2008, 100, 026804.	7.8	234
5	Undoing a Weak Quantum Measurement of a Solid-State Qubit. Physical Review Letters, 2006, 97, 166805.	7.8	213
6	Technical Advantages for Weak-Value Amplification: When Less Is More. Physical Review X, 2014, 4, .	8.9	181
7	Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values. Physical Review A, 2009, 80, .	2.5	179
8	Mapping the optimal route between two quantum states. Nature, 2014, 511, 570-573.	27.8	163
9	Experimental Violation of Two-Party Leggett-Garg Inequalities with Semiweak Measurements. Physical Review Letters, 2011, 106, 040402.	7.8	148
10	Powerful and efficient energy harvester with resonant-tunneling quantum dots. Physical Review B, 2013, 87, .	3.2	148
11	Stochastic Path Integral Formulation of Full Counting Statistics. Physical Review Letters, 2003, 90, 206801.	7.8	146
12	Precision frequency measurements with interferometric weak values. Physical Review A, 2010, 82, .	2.5	145
13	Rectification of thermal fluctuations in a chaotic cavity heat engine. Physical Review B, 2012, 85, .	3.2	117
14	Continuous phase amplification with a Sagnac interferometer. Physical Review A, 2010, 82, .	2.5	114
15	Optimal adaptive control for quantum metrology with time-dependent Hamiltonians. Nature Communications, 2017, 8, 14695.	12.8	110
16	Experimentally quantifying the advantages of weak-value-based metrology. Physical Review A, 2015, 92, .	2.5	101
17	Conditional statistics of electron transport in interacting nanoscale conductors. Nature Physics, 2007, 3, 243-247.	16.7	94
18	Significance of the imaginary part of the weak value. Physical Review A, 2012, 85, .	2.5	94

2

#	Article	IF	CITATIONS
19	Contextual Values of Observables in Quantum Measurements. Physical Review Letters, 2010, 104, 240401.	7.8	90
20	Fluctuation statistics in networks: A stochastic path integral approach. Journal of Mathematical Physics, 2004, 45, 4386-4417.	1.1	88
21	Leggett-Garg Inequality with a Kicked Quantum Pump. Physical Review Letters, 2006, 97, 026805.	7.8	82
22	Efficient Quantum Measurement Engines. Physical Review Letters, 2018, 120, 260601.	7.8	81
23	Chiral Thermoelectrics with Quantum Hall Edge States. Physical Review Letters, 2015, 114, 146801.	7.8	79
24	Correlations of heat and charge currents in quantum-dot thermoelectric engines. New Journal of Physics, 2013, 15, 125001.	2.9	74
25	Experimental Realization of a Quantum Dot Energy Harvester. Physical Review Letters, 2019, 123, 117701.	7.8	69
26	Powerful energy harvester based on resonant-tunneling quantum wells. New Journal of Physics, 2013, 15, 095021.	2.9	66
27	Parity meter for charge qubits: An efficient quantum entangler. Physical Review B, 2006, 73, .	3.2	65
28	Action principle for continuous quantum measurement. Physical Review A, 2013, 88, .	2.5	64
29	Quantum-limited estimation of the axial separation of two incoherent point sources. Optica, 2019, 6, 534.	9.3	64
30	Weak-value amplification and optimal parameter estimation in the presence of correlated noise. Physical Review A, 2017, 96, .	2.5	62
31	Qubit feedback and control with kicked quantum nondemolition measurements: A quantum Bayesian analysis. Physical Review B, 2006, 74, .	3.2	61
32	Heat diode and engine based on quantum Hall edge states. New Journal of Physics, 2015, 17, 075006.	2.9	61
33	Continuous Quantum Measurement with Independent Detector Cross Correlations. Physical Review Letters, 2005, 95, 220401.	7.8	57
34	Interferometric weak value deflections: Quantum and classical treatments. Physical Review A, 2010, 81,	2.5	55
35	Strengthening weak-value amplification with recycled photons. Physical Review A, 2013, 88, .	2.5	52
36	Entanglement Energetics at Zero Temperature. Physical Review Letters, 2004, 92, 247901.	7.8	50

#	Article	IF	CITATIONS
37	Stochastic Dynamics of a Josephson Junction Threshold Detector. Physical Review Letters, 2007, 98, 136803.	7.8	50
38	Transport Statistics of Bistable Systems. Physical Review Letters, 2004, 93, 260604.	7.8	49
39	Two-Qubit Engine Fueled by Entanglement and Local Measurements. Physical Review Letters, 2021, 126, 120605.	7.8	48
40	Quantum nondemolition measurement of a kicked qubit. Physical Review B, 2005, 71, .	3.2	46
41	Stochastic path-integral formalism for continuous quantum measurement. Physical Review A, 2015, 92,	2.5	46
42	Contextual-value approach to the generalized measurement of observables. Physical Review A, 2012, 85,	2.5	45
43	Optimal measurements for quantum multiparameter estimation with general states. Physical Review A, 2019, 100, .	2.5	45
44	Power-Recycled Weak-Value-Based Metrology. Physical Review Letters, 2015, 114, 170801.	7.8	44
45	Quantum Nernst engines. Europhysics Letters, 2014, 107, 47003.	2.0	40
46	Weak Values are Universal in Von Neumann Measurements. Physical Review Letters, 2012, 109, 230402.	7.8	38
47	Protecting weak measurements against systematic errors. Physical Review A, 2016, 94, .	2.5	36
48	Probe-configuration-dependent dephasing in a mesoscopic interferometer. Physical Review B, 2003, 68, .	3.2	34
49	Thermal transistor and thermometer based on Coulomb-coupled conductors. Physical Review B, 2019, 100, .	3.2	34
50	Entanglement genesis under continuous parity measurement. Physical Review A, 2008, 78, .	2.5	32
51	Uncollapsing the wavefunction by undoing quantum measurements. Contemporary Physics, 2010, 51, 125-147.	1.8	32
52	Quantum Trajectories and Their Statistics for Remotely Entangled Quantum Bits. Physical Review X, 2016, 6, .	8.9	32
53	Anatomy of fluorescence: quantum trajectory statistics from continuously measuring spontaneous emission. Quantum Studies: Mathematics and Foundations, 2016, 3, 237-263.	0.9	29
54	Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control. Physical Review Letters, 2017, 119, 180801.	7.8	29

#	Article	IF	CITATIONS
55	Arrow of Time for Continuous Quantum Measurement. Physical Review Letters, 2017, 119, 220507.	7.8	29
56	Experimental demonstration of superresolution of partially coherent light sources using parity sorting. Optics Express, 2021, 29, 22034.	3.4	27
57	Three-terminal heat engine and refrigerator based on superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 465-474.	2.7	25
58	Can a Dove prism change the past of a single photon?. Quantum Studies: Mathematics and Foundations, 2015, 2, 255-261.	0.9	25
59	Heisenberg scaling with weak measurement: a quantum state discrimination point of view. Quantum Studies: Mathematics and Foundations, 2015, 2, 5-15.	0.9	25
60	Quantum measurement engines and their relevance for quantum interpretations. Quantum Studies: Mathematics and Foundations, 2020, 7, 203-215.	0.9	25
61	Quantum instruments as a foundation for both states and observables. Physical Review A, 2013, 88, .	2.5	23
62	Rapid estimation of drifting parameters in continuously measured quantum systems. Physical Review A, 2017, 95, .	2.5	23
63	Measuring which-path information with coupled electronic Mach-Zehnder interferometers. Physical Review B, 2012, 85, .	3.2	22
64	Quantum parameter estimation with the Landau-Zener transition. Physical Review A, 2017, 96, .	2.5	22
65	Conditional teleportation of quantum-dot spin states. Nature Communications, 2020, 11, 3022.	12.8	22
66	Ground state entanglement energetics. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 272-282.	2.7	20
67	Simultaneous continuous measurement of noncommuting observables: Quantum state correlations. Physical Review A, 2018, 97, .	2.5	19
68	Fluctuation theorems for continuous quantum measurements and absolute irreversibility. Physical Review A, 2019, 99, .	2.5	18
69	Experimental demonstration of continuous quantum error correction. Nature Communications, 2022, 13, 2307.	12.8	18
70	Efficiently fueling a quantum engine with incompatible measurements. Physical Review E, 2022, 105, 044137.	2.1	18
71	Effective thermodynamics of strongly coupled qubits. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 385003.	2.1	17
72	Sufficient conditions for uniqueness of the weak value. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 015304.	2.1	17

#	Article	IF	CITATIONS
73	Precision optical displacement measurements using biphotons. Physical Review A, 2016, 93, .	2.5	16
74	Variational Principle for Optimal Quantum Controls in Quantum Metrology. Physical Review Letters, 2022, 128, 160505.	7.8	16
75	Energy measurements and preparation of canonical phase states of a nano-mechanical resonator. Europhysics Letters, 2008, 82, 18003.	2.0	15
76	Operational approach to indirectly measuring the tunneling time. Physical Review A, 2013, 88, .	2.5	15
77	Prediction and characterization of multiple extremal paths in continuously monitored qubits. Physical Review A, 2017, 95, .	2.5	15
78	Gap theory of rectification in ballistic three-terminal conductors. Physical Review B, 2008, 77, .	3.2	14
79	Electrical current from quantum vacuum fluctuations in nanoengines. Physical Review B, 2015, 92, .	3.2	14
80	Superconducting Quantum Refrigerator: Breaking and Rejoining Cooper Pairs with Magnetic Field Cycles. Physical Review Applied, 2019, 11, .	3.8	14
81	Realization of an All-Optical Zero to <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>i€</mml:mi></mml:math> Cross-Phase Modulation Jump. Physical Review Letters, 2009, 102, 013902.	7.8	13
82	Confocal super-resolution microscopy based on a spatial mode sorter. Optics Express, 2021, 29, 11784.	3.4	13
83	Quantum measurement arrow of time and fluctuation relations for measuring spin of ultracold atoms. Nature Communications, 2021, 12, 1847.	12.8	13
84	Effect of incoherent scattering on three-terminal quantum Hall thermoelectrics. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 75, 86-92.	2.7	12
85	Linear feedback stabilization of a dispersively monitored qubit. Physical Review A, 2017, 96, .	2.5	12
86	Enhanced Weak-Value Amplification via Photon Recycling. Physical Review Letters, 2021, 126, 220801.	7.8	12
87	Autonomous quantum absorption refrigerators. Physical Review B, 2020, 102, .	3.2	12
88	Mesoscopic threshold detectors: Telegraphing the size of a fluctuation. Physical Review B, 2005, 72, .	3.2	11
89	Weak values are quantum: you can bet on it. Quantum Studies: Mathematics and Foundations, 2016, 3, 1-4.	0.9	11
90	Measuring fluorescence to track a quantum emitter's state: a theory review. Contemporary Physics, 2020, 61, 26-50.	1.8	11

#	Article	IF	CITATIONS
91	Weak-measurement theory of quantum-dot spin qubits. Physical Review B, 2007, 76, .	3.2	10
92	Andreev reflections and the quantum physics of black holes. Physical Review D, 2017, 96, .	4.7	10
93	Super-Heisenberg scaling in Hamiltonian parameter estimation in the long-range Kitaev chain. Physical Review Research, 2022, 4, .	3.6	10
94	Gravitational redshift and deflection of slow light. Physical Review A, 2009, 79, .	2.5	9
95	Chaos in continuously monitored quantum systems: An optimal-path approach. Physical Review A, 2018, 98, .	2.5	9
96	Stochastic thermodynamic cycles of a mesoscopic thermoelectric engine. Physical Review B, 2021, 103, .	3.2	9
97	Minimal two-body quantum absorption refrigerator. Physical Review B, 2021, 104, .	3.2	9
98	Always-On Quantum Error Tracking with Continuous Parity Measurements. Quantum - the Open Journal for Quantum Science, 0, 4, 358.	0.0	9
99	Enhanced on-chip phase measurement by inverse weak value amplification. Nature Communications, 2021, 12, 6247.	12.8	9
100	Fluctuation statistics of mesoscopic Bose-Einstein condensates: Reconciling the master equation with the partition function to reexamine the Uhlenbeck-Einstein dilemma. Physical Review A, 2006, 74, .	2.5	8
101	Time reversal symmetry of generalized quantum measurements with past and future boundary conditions. Quantum Studies: Mathematics and Foundations, 2019, 6, 241-268.	0.9	8
102	An Interaction-Free Quantum Measurement-Driven Engine. Foundations of Physics, 2020, 50, 1294-1314.	1.3	8
103	Watching the wavefunction collapse. Nature, 2013, 502, 177-178.	27.8	6
104	Noise suppression in inverse weak value-based phase detection. Quantum Studies: Mathematics and Foundations, 2018, 5, 579-588.	0.9	6
105	Quantum state tomography with time-continuous measurements: reconstruction with resource limitations. Quantum Studies: Mathematics and Foundations, 2020, 7, 23-47.	0.9	6
106	Black holes as Andreev reflecting mirrors. Physical Review D, 2020, 102, .	4.7	6
107	Stochastic Path-Integral Analysis of the Continuously Monitored Quantum Harmonic Oscillator. PRX Quantum, 2022, 3, .	9.2	6
108	Bosons falling into a black hole: A superfluid analogue. Physical Review D, 2018, 98, .	4.7	5

1

#	Article	IF	CITATIONS
109	Nonequilibrium steady state and heat transport in nonlinear open quantum systems: Stochastic influence action and functional perturbative analysis. Annals of Physics, 2020, 421, 168289.	2.8	5
110	Entanglement-preserving limit cycles from sequential quantum measurements and feedback. Physical Review A, 2020, 102, .	2.5	5
111	Continuous measurement of a qudit using dispersively coupled radiation. Physical Review A, 2022, 105, .	2.5	4
112	Classical-quantum sensors keep better time. Science, 2017, 356, 802-803.	12.6	3
113	Gravitational sensing with weak value based optical sensors. Quantum Studies: Mathematics and Foundations, 2019, 6, 169-180.	0.9	3
114	Entanglement energetics in the ground state. Journal of Modern Optics, 2004, 51, 2405-2414.	1.3	2
115	Achieving the Threshold Regime with an Overscreened Josephson Junction. Physical Review Letters, 2009, 102, 086806.	7.8	2
116	Decay of a metastable state activated by non-Gaussian noise: A critical review of the generalized Kramers problem. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 550-554.	2.7	2
117	Superresolution using supergrowth and intensity contrast imaging. Quantum Studies: Mathematics and Foundations, 2020, 7, 285-292.	0.9	2
118	Entanglement of a pair of quantum emitters via continuous fluorescence measurements: a tutorial. Advances in Optics and Photonics, 2021, 13, 517.	25.5	2
119	Some Like It Hot. Inference, 2019, 5, .	0.0	2
120	Reprint of : Effect of incoherent scattering on three-terminal quantum Hall thermoelectrics. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 359-365.	2.7	1
121	Reprint of : Three-terminal heat engine and refrigerator based on superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 314-324.	2.7	1
122	Diffraction-based interaction-free measurements. Quantum Studies: Mathematics and Foundations, 2020, 7, 145-153.	0.9	1
123	Quantum system dynamics with a weakly nonlinear Josephson junction bath. Physical Review B, 2021, 103, .	3.2	1
124	Thermal control across a chain of electronic nanocavities. Physical Review B, 2021, 104, .	3.2	1
125	Uncollapsing the wavefunction. , 2007, , .		1

126 Spooky Work at a Distance: An Interaction-Free Quantum Measurement Driven Engine. , 2019, , .

8

0

#	Article	IF	CITATIONS
127	Near Quantum Limited Optical Phase Measurements on a Dark Fringe. , 2010, , .		1
128	Enhanced on-chip frequency measurement using weak value amplification. Optics Express, 2022, 30, 3700.	3.4	1
129	Transport statistics in bistable systems: a stochastic path integral approach (Invited Paper). , 2005, 5843, 80.		0
130	Mesoscopic Threshold Detectors of Shot Noise. AIP Conference Proceedings, 2007, , .	0.4	0
131	A Weak Value Inequality as a Test for Local Realism. , 2010, , .		0
132	Contextual values as a foundation for a unique Weak Value. , 2011, , .		0
133	Increasing Weak Measurement SNR with Recycling. , 2014, , .		0
134	Janus sequences of quantum measurements and the arrow of time. AIP Conference Proceedings, 2017, , .	0.4	0
135	Weak values and the Leggett-Garg inequality in solid-state qubits. , 2008, , .		0
136	Deflection Measurements with Weak Values. , 2010, , .		0
137	Experimental Violation of a Non-Local Leggett-Garg Inequality using Non-Local Weak Measurements. , 2010, , .		0
138	Weak Values: The Progression from Quantum Foundations to Tool. , 2014, , 259-278.		0
139	Experimentally Quantifying the Advantages of Weak-Values-Based Metrology. , 2015, , .		0
140	Multiple Most-Likely Path Solutions for Continuously Monitored, Driven Qubits. , 2016, , .		0
141	Odd Man Out. Inference, 2017, 3, .	0.0	0
142	Woit's Way. Inference, 2018, 4, .	0.0	0
143	Superresolution using parity sorting with partially coherent light. , 2019, , .		0

144 Time dependent metrology: improving precision through coherent control. , 2019, , .

9

0

#	Article	IF	CITATIONS
145	High Temperature Superconductivity. Inference, 2019, 5, .	0.0	0

146 Enhanced On-Chip Phase Measurement by Weak Value Amplification. , 2020, , .