
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7010688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Testâ€dose pharmacokinetics guided melphalan dose adjustment in reduced intensity conditioning allogeneic transplant for nonâ€malignant disorders. British Journal of Clinical Pharmacology, 2022, 88, 115-127.	2.4	5
2	T-follicular helper cell expansion and chronic T-cell activation are characteristic immune anomalies in Evans syndrome. Blood, 2022, 139, 369-383.	1.4	14
3	Comparison of hematopoietic cell transplant conditioning regimens for hemophagocytic lymphohistiocytosis disorders. Journal of Allergy and Clinical Immunology, 2022, 149, 1097-1104.e2.	2.9	16
4	Chronic Granulomatous Disease With Inflammatory Bowel Disease: Clinical Presentation, Treatment, and Outcomes From the USIDNET Registry. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1325-1333.e5.	3.8	11
5	Morbidity, Mortality, and Therapeutics in Combined Immunodeficiency: Data from the USIDNET Registry. Journal of Allergy and Clinical Immunology: in Practice, 2022, , .	3.8	0
6	Inborn Errors of Immunity Associated With Type 2 Inflammation in the USIDNET Registry. Frontiers in Immunology, 2022, 13, 831279.	4.8	6
7	A Case of XIAP Deficiency Successfully Managed with Tadekinig Alfa (rhIL-18BP). Journal of Clinical Immunology, 2022, 42, 901-903.	3.8	15
8	Preemptive hematopoietic cell transplantation for asymptomatic patients with X-linked lymphoproliferative syndrome type 1. Clinical Immunology, 2022, 237, 108993.	3.2	1
9	Granulocyte Transfusions in Patients with Chronic Granulomatous Disease Undergoing Hematopoietic Cell Transplantation or Gene Therapy. Journal of Clinical Immunology, 2022, 42, 1026-1035.	3.8	3
10	Quercetin ameliorates XIAP deficiency–associated hyperinflammation. Blood, 2022, 140, 706-715.	1.4	12
11	Does shining a spotlight on XIAP deficiency bring the role of allogeneic HCT into better focus?. Journal of Allergy and Clinical Immunology, 2022, , .	2.9	1
12	Reduced Intensity Conditioning Allogeneic Transplant for SCID Associated with Cartilage Hair Hypoplasia. Journal of Clinical Immunology, 2022, 42, 1604-1607.	3.8	1
13	Experience with a Reduced Toxicity Allogeneic Transplant Regimen for Non-CGD Primary Immune Deficiencies Requiring Myeloablation. Journal of Clinical Immunology, 2021, 41, 89-98.	3.8	13
14	Relationship Between Severity of T Cell Lymphopenia and Immune Dysregulation in Patients with DiGeorge Syndrome (22q11.2 Deletions and/or Related TBX1 Mutations): a USIDNET Study. Journal of Clinical Immunology, 2021, 41, 29-37.	3.8	17
15	BCG-osis and Hematopoietic Cell Transplant for Primary Immunodeficiencies. Journal of Clinical Immunology, 2021, 41, 491-494.	3.8	2
16	Novel Treatment of Infant With COVID-19 With the Sialidase Fusion Protein, DAS181. Pediatric Infectious Disease Journal, 2021, 40, e234-e235.	2.0	2
17	The transcription factor Bcl11b promotes both canonical and adaptive NK cell differentiation. Science Immunology, 2021, 6, .	11.9	42
18	T-cell activation profiles distinguish hemophagocytic lymphohistiocytosis and early sepsis. Blood, 2021, 137, 2337-2346.	1.4	63

#	Article	IF	CITATIONS
19	α4β7 Integrin expression and blockade in pediatric and young adult gastrointestinal graftâ€versusâ€host disease. Pediatric Blood and Cancer, 2021, 68, e28968.	1.5	9
20	Cutaneous T-cell lymphoma as a unique presenting malignancy in X-linked magnesium defect with EBV infection and neoplasia (XMEN) disease. Clinical Immunology, 2021, 226, 108722.	3.2	4
21	Daratumumab for the management of autoimmune cytopenias in children and young adults: a case series. British Journal of Haematology, 2021, 194, e84-e89.	2.5	7
22	Evolution of Our Understanding of XIAP Deficiency. Frontiers in Pediatrics, 2021, 9, 660520.	1.9	38
23	Modelâ€informed precision dosing for alemtuzumab in paediatric and young adult patients undergoing allogeneic haematopoietic cell transplantation. British Journal of Clinical Pharmacology, 2021, , .	2.4	8
24	Standardizing Definitions of Hematopoietic Recovery, Graft Rejection, Graft Failure, Poor Graft Function, and Donor Chimerism in Allogeneic Hematopoietic Cell Transplantation: A Report on Behalf of the American Society for Transplantation and Cellular Therapy. Transplantation and Cellular Therapy, 2021, 27, 642-649.	1.2	65
25	A prospective pilot study of a novel alemtuzumab target concentration intervention strategy. Bone Marrow Transplantation, 2021, 56, 3029-3031.	2.4	5
26	A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3293-3307.e6.	3.8	7
27	Reduced-Intensity/Reduced-Toxicity Conditioning Approaches Are Tolerated in XIAP Deficiency but Patients Fare Poorly with Acute GVHD. Journal of Clinical Immunology, 2021, , 1.	3.8	9
28	Histiocytic disorders. Nature Reviews Disease Primers, 2021, 7, 73.	30.5	46
29	CD38brightCD8+ T Cells Associated with the Development of Acute GVHD Are Activated, Proliferating, and Cytotoxic Trafficking Cells. Biology of Blood and Marrow Transplantation, 2020, 26, 1-6.	2.0	18
30	APOL1-Associated Collapsing Focal Segmental Glomerulosclerosis in a Patient With Stimulator of Interferon Genes (STING)-Associated Vasculopathy With Onset in Infancy (SAVI). American Journal of Kidney Diseases, 2020, 75, 287-290.	1.9	48
31	Reduced-intensity single-unit unrelated cord blood transplant with optional immune boost for nonmalignant disorders. Blood Advances, 2020, 4, 3041-3052.	5.2	13
32	Adenosine Deaminase (ADA)–Deficient Severe Combined Immune Deficiency (SCID) in the US Immunodeficiency Network (USIDNet) Registry. Journal of Clinical Immunology, 2020, 40, 1124-1131.	3.8	19
33	Frequency and spectrum of disease-causing variants in 1892 patients with suspected genetic HLH disorders. Blood Advances, 2020, 4, 2578-2594.	5.2	29
34	Hematopoietic Cell Transplantation in Patients With Primary Immune Regulatory Disorders (PIRD): A Primary Immune Deficiency Treatment Consortium (PIDTC) Survey. Frontiers in Immunology, 2020, 11, 239.	4.8	57
35	Ibrutinib for the treatment of chronic graftâ€vsâ€host disease in pediatric hematopoietic stem cell transplant patients: A singleâ€center experience. Pediatric Transplantation, 2020, 24, e13692.	1.0	10
36	Neuroinflammatory Disease as an Isolated Manifestation of Hemophagocytic Lymphohistiocytosis. Journal of Clinical Immunology, 2020, 40, 901-916.	3.8	33

#	Article	IF	CITATIONS
37	Genetic diseases predisposing to HLH. , 2020, , 549-572.		0
38	EBV susceptibility. , 2020, , 591-616.		0
39	CCR5 inhibitor as novel acute graft versus host disease prophylaxis in children and young adults undergoing allogeneic stem cell transplant: results of the phase II study. Bone Marrow Transplantation, 2020, 55, 1552-1559.	2.4	6
40	Pediatric hemophagocytic lymphohistiocytosis. Blood, 2020, 135, 1332-1343.	1.4	226
41	Thinking Beyond HLH: Clinical Features of Patients with Concurrent Presentation of Hemophagocytic Lymphohistiocytosis and Thrombotic Microangiopathy. Journal of Clinical Immunology, 2020, 40, 699-707.	3.8	35
42	Neutropenia Is an Underrecognized Finding in Pediatric Primary Immunodeficiency Diseases: An Analysis of the United States Immunodeficiency Network Registry. Journal of Pediatric Hematology/Oncology, 2020, 42, e601-e605.	0.6	7
43	A Multi-Center Case Series, Systematic Review and Meta-Analysis of Neonatal Hemophagocytic Lymphohistiocytosis. Blood, 2020, 136, 19-20.	1.4	0
44	Conditioning Regimens and Outcomes after Allogeneic Hematopoietic Cell Transplant for Hyperinflammatory Inborn Errors of Immunity. Blood, 2020, 136, 36-37.	1.4	0
45	Current Flow Cytometric Assays for the Screening and Diagnosis of Primary HLH. Frontiers in Immunology, 2019, 10, 1740.	4.8	15
46	Chronic Granulomatous Disease-Associated IBD Resolves and Does Not Adversely Impact Survival Following Allogeneic HCT. Journal of Clinical Immunology, 2019, 39, 653-667.	3.8	41
47	The Value of Chromosome Analysis to Interrogate Variants in DNMT3B Causing Immunodeficiency, Centromeric Instability, and Facial Anomaly Syndrome Type I (ICF1). Journal of Clinical Immunology, 2019, 39, 857-859.	3.8	5
48	Antibody deficiency testing for primary immunodeficiency. Annals of Allergy, Asthma and Immunology, 2019, 123, 444-453.	1.0	28
49	TNFR2 induced priming of the inflammasome leads to a RIPK1-dependent cell death in the absence of XIAP. Cell Death and Disease, 2019, 10, 700.	6.3	25
50	Hemophagocytic Lymphohistiocytosis: Clinical Presentations and Diagnosis. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 824-832.	3.8	76
51	Salvage Therapy and Allogeneic Hematopoietic Cell Transplantation for theÂSevere Cytokine Storm Syndrome of Hemophagocytic Lymphohistiocytosis. , 2019, , 595-606.		0
52	Micafungin antifungal prophylaxis in children undergoing HSCT: can we give higher doses, less frequently? A pharmacokinetic study. Journal of Antimicrobial Chemotherapy, 2018, 73, 1651-1658.	3.0	6
53	Use of Genetic Testing for Primary Immunodeficiency Patients. Journal of Clinical Immunology, 2018, 38, 320-329.	3.8	88
54	Post-Transplant CD34+ Selected Stem Cell "Boost―for Mixed Chimerism after Reduced-Intensity Conditioning Hematopoietic Stem Cell Transplantation in Children and Young Adults with Primary Immune Deficiencies. Biology of Blood and Marrow Transplantation, 2018, 24, 1527-1529.	2.0	13

#	Article	IF	CITATIONS
55	Treatment of Newly Diagnosed HLH and Refractory Disease. , 2018, , 247-263.		0
56	T cell dynamics and response of the microbiota after gene therapy to treat X-linked severe combined immunodeficiency. Genome Medicine, 2018, 10, 70.	8.2	28
57	Practice pattern changes and improvements in hematopoietic cell transplantation for primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2018, 142, 2004-2007.	2.9	14
58	Hypogammaglobulinemia with decreased class-switched B-cells and dysregulated T-follicular-helper cells in IPEX syndrome. Clinical Immunology, 2018, 197, 219-223.	3.2	15
59	Allogeneic hematopoietic stem cell transplantation for severe, refractory juvenile idiopathic arthritis. Blood Advances, 2018, 2, 777-786.	5.2	37
60	How i treat primary haemophagocytic lymphohistiocytosis. British Journal of Haematology, 2018, 182, 185-199.	2.5	42
61	Comprehensive molecular diagnosis of Epstein–Barr virus-associated lymphoproliferative diseases using next-generation sequencing. International Journal of Hematology, 2018, 108, 319-328.	1.6	6
62	Screening for Wiskott-Aldrich syndrome by flow cytometry. Journal of Allergy and Clinical Immunology, 2018, 142, 333-335.e8.	2.9	20
63	Reduced-intensity conditioning for hematopoietic cell transplant for HLH and primary immune deficiencies. Blood, 2018, 132, 1438-1451.	1.4	78
64	Treatment dilemmas in asymptomatic children with primary hemophagocytic lymphohistiocytosis. Blood, 2018, 132, 2088-2096.	1.4	17
65	Allogeneic Hematopoietic Cell Transplantation for Chronic Granulomatous Disease: Controversies and State of the Art. Journal of the Pediatric Infectious Diseases Society, 2018, 7, S31-S39.	1.3	41
66	Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. Journal of Clinical Investigation, 2018, 128, 3071-3087.	8.2	133
67	Pretransplant Absolute Lymphocyte Counts Impact the Pharmacokinetics of Alemtuzumab. Biology of Blood and Marrow Transplantation, 2017, 23, 635-641.	2.0	24
68	Diagnostic dilemmas in HLH: Can T ell phenotyping help?. European Journal of Immunology, 2017, 47, 240-243.	2.9	3
69	Perforin and CD107a testing is superior to NK cell function testing for screening patients for genetic HLH. Blood, 2017, 129, 2993-2999.	1.4	114
70	Nucleotide-binding oligomerization domain (NOD) signaling defects and cell death susceptibility cannot be uncoupled in X-linked inhibitor of apoptosis (XIAP)-driven inflammatory disease. Journal of Biological Chemistry, 2017, 292, 9666-9679.	3.4	23
71	Impaired immune function in children and adults with Fanconi anemia. Pediatric Blood and Cancer, 2017, 64, e26599.	1.5	24
72	Ruxolitinib as Salvage Therapy in Steroid-Refractory Acute Graft-versus-Host Disease in Pediatric Hematopoietic Stem Cell Transplant Patients. Biology of Blood and Marrow Transplantation, 2017, 23, 1122-1127	2.0	96

#	Article	IF	CITATIONS
73	Incidence and Outcomes of Central Nervous System Hemophagocytic Lymphohistiocytosis Relapse after Reduced-Intensity Conditioning Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2017, 23, 857-860.	2.0	17
74	HIF1A is a critical downstream mediator for hemophagocytic lymphohistiocytosis. Haematologica, 2017, 102, 1956-1968.	3.5	9
75	Outcome of patients with NEMO deficiency following allogeneic hematopoietic cell transplant. Journal of Allergy and Clinical Immunology, 2017, 139, 1040-1043.e2.	2.9	13
76	Salvage therapy for refractory hemophagocytic lymphohistiocytosis: A review of the published experience. Pediatric Blood and Cancer, 2017, 64, e26308.	1.5	43
77	Epstein–Barr Virus and Hemophagocytic Lymphohistiocytosis. Frontiers in Immunology, 2017, 8, 1902.	4.8	99
78	Cytokine Profile of Engraftment Syndrome in Pediatric Hematopoietic Stem Cell Transplant Recipients. Biology of Blood and Marrow Transplantation, 2016, 22, 690-697.	2.0	28
79	A challenging undertaking: Stem cell transplantation for immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Journal of Allergy and Clinical Immunology, 2016, 137, 953-955.e4.	2.9	34
80	Alemtuzumab levels impact acute GVHD, mixed chimerism, and lymphocyte recovery following alemtuzumab, fludarabine, and melphalan RIC HCT. Blood, 2016, 127, 503-512.	1.4	69
81	The minimum required level of donor chimerism in hereditary hemophagocytic lymphohistiocytosis. Blood, 2016, 127, 3281-3290.	1.4	83
82	A Pharmacokinetic and Pharmacodynamic Study of Maraviroc as Acute Graft-versus-Host Disease Prophylaxis in Pediatric Allogeneic Stem Cell Transplant Recipients with Nonmalignant Diagnoses. Biology of Blood and Marrow Transplantation, 2016, 22, 1829-1835.	2.0	8
83	A Single-Center Experience Comparing Alemtuzumab, Fludarabine, and Melphalan Reduced-Intensity Conditioning with Myeloablative Busulfan, Cyclophosphamide, and Antithymocyte Globulin for Chronic Granulomatous Disease. Biology of Blood and Marrow Transplantation, 2016, 22, 2011-2018.	2.0	22
84	A Prospective Study of Alemtuzumab as a Second-Line Agent for Steroid-Refractory Acute Graft-versus-Host Disease in Pediatric and Young Adult Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 2220-2225.	2.0	18
85	A Reduced-Intensity Conditioning Regimen for Patients with Dyskeratosis Congenita Undergoing Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 884-888.	2.0	28
86	Accuracy of flow cytometric perforin screening for detecting patients with FHL due to PRF1 mutations. Blood, 2015, 126, 1858-1860.	1.4	29
87	Hemophagocytic lymphohistiocytosis in a female patient due to a heterozygous <i>XIAP</i> mutation and skewed X chromosome inactivation. Pediatric Blood and Cancer, 2015, 62, 1288-1290.	1.5	21
88	Experience with Alemtuzumab, Fludarabine, and Melphalan Reduced-Intensity Conditioning Hematopoietic Cell Transplantation in Patients with Nonmalignant Diseases Reveals Good Outcomes and That the Risk of Mixed Chimerism Depends on Underlying Disease, Stem Cell Source, and Alemtuzumab Regimen. Biology of Blood and Marrow Transplantation, 2015, 21, 1460-1470.	2.0	65
89	Peripheral Blood CD38 Bright CD8+ Effector Memory T Cells Predict Acute Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2015, 21, 1215-1222.	2.0	25
90	Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science, 2015, 349, 436-440.	12.6	580

#	Article	IF	CITATIONS
91	Outcomes of Donor Lymphocyte Infusion for Treatment of Mixed Donor Chimerism after a Reduced-Intensity Preparative Regimen for Pediatric Patients with Nonmalignant Diseases. Biology of Blood and Marrow Transplantation, 2015, 21, 288-292.	2.0	50
92	The X-Linked Lymphoproliferative Syndromes. , 2014, , 475-495.		0
93	Clinical Flow Cytometric Screening of SAP and XIAP Expression Accurately Identifies Patients with <i>SH2D1A</i> and <i>XIAP/BIRC4</i> Mutations. , 2014, , n/a-n/a.		28
94	Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with <i>SH2D1A</i> and <i>XIAP/BIRC4</i> mutations. , 2014, 86, 263-271.		38
95	Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine, 2014, 65, 74-78.	3.2	112
96	Bortezomib for Refractory Autoimmunity in Pediatrics. Biology of Blood and Marrow Transplantation, 2014, 20, 1654-1659.	2.0	47
97	Reduced-Intensity Conditioning Hematopoietic Cell Transplantation Is an Effective Treatment for Patients withÂSLAM-Associated Protein Deficiency/X-linked Lymphoproliferative Disease Type 1. Biology of Blood and Marrow Transplantation, 2014, 20, 1641-1645.	2.0	46
98	Salvage therapy of refractory hemophagocytic lymphohistiocytosis with alemtuzumab. Pediatric Blood and Cancer, 2013, 60, 101-109.	1.5	246
99	An Intermediate Alemtuzumab Schedule Reduces the Incidence of Mixed Chimerism Following Reduced-Intensity Conditioning Hematopoietic Cell Transplantation for Hemophagocytic Lymphohistiocytosis. Biology of Blood and Marrow Transplantation, 2013, 19, 1625-1631.	2.0	65
100	Flow Cytometric Measurement of SLAM-Associated Protein and X-Linked Inhibitor of Apoptosis. Methods in Molecular Biology, 2013, 979, 189-197.	0.9	15
101	Allogeneic hematopoietic cell transplantation for XIAP deficiency: an international survey reveals poor outcomes. Blood, 2013, 121, 877-883.	1.4	132
102	Elevated Granzyme B in Cytotoxic Lymphocytes is a Signature of Immune Activation in Hemophagocytic Lymphohistiocytosis. Frontiers in Immunology, 2013, 4, 72.	4.8	57
103	Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood, 2011, 118, 5794-5798.	1.4	349
104	Reducedâ€intensity conditioning haematopoietic cell transplantation for haemophagocytic lymphohistiocytosis: an important step forward. British Journal of Haematology, 2011, 154, 556-563.	2.5	64
105	Familial hemophagocytic lymphohistiocytosis and Xâ€linked lymphoproliferative disease. Annals of the New York Academy of Sciences, 2011, 1238, 106-121.	3.8	8
106	Contemporary diagnostic methods for hemophagocytic lymphohistiocytic disorders. Journal of Immunological Methods, 2011, 364, 1-13.	1.4	35
107	XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood, 2010, 116, 1079-1082.	1.4	223
108	Reduced-intensity conditioning significantly improves survival of patients with hemophagocytic lymphohistiocytosis undergoing allogeneic hematopoietic cell transplantation. Blood, 2010, 116, 5824-5831.	1.4	241

#	Article	IF	CITATIONS
109	Using flow cytometry to screen patients for X-linked lymphoproliferative disease due to SAP deficiency and XIAP deficiency. Journal of Immunological Methods, 2010, 362, 1-9.	1.4	69
110	<i>STX11</i> mutations and clinical phenotypes of familial hemophagocytic lymphohistiocytosis in North America. Pediatric Blood and Cancer, 2010, 55, 134-140.	1.5	42
111	X-linked lymphoproliferative syndromes: brothers or distant cousins?. Blood, 2010, 116, 3398-3408.	1.4	150
112	Patients with X-linked lymphoproliferative disease due to BIRC4 mutation have normal invariant natural killer T-cell populations. Clinical Immunology, 2009, 132, 116-123.	3.2	51
113	A rapid flow cytometric screening test for Xâ€linked lymphoproliferative disease due to XIAP deficiency. Cytometry Part B - Clinical Cytometry, 2009, 76B, 334-344.	1.5	57
114	Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. Journal of Clinical Investigation, 2009, 119, 2976-89.	8.2	126
115	Evaluation of Natural Killer (NK) Cell Defects. , 0, , 775-780.		0