
Sabrina Carroccio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7010677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autonomous self-propelled MnO2 micromotors for hormones removal and degradation. Applied Materials Today, 2022, 26, 101312.	4.3	7
2	Superparamagnetic Iron Oxide Nanoparticle Nanodevices Based on Fe ₃ O ₄ Coated by Megluminic Ligands for the Adsorption of Metal Anions from Water. ACS Omega, 2022, 7, 10775-10788.	3.5	9
3	Shape-Controlled Self-Assembly of Light-Powered Microrobots into Ordered Microchains for Cells Transport and Water Remediation. ACS Nano, 2022, 16, 7615-7625.	14.6	38
4	Lightâ€Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small, 2022, 18, e2200708.	10.0	26
5	Recycled (Bio)Plastics and (Bio)Plastic Composites: A Trade Opportunity in a Green Future. Polymers, 2022, 14, 2038.	4.5	14
6	Preparation, characterization, and antimicrobial activity of ferrocene ontaining polymeric materials. Journal of Applied Polymer Science, 2021, 138, 49852.	2.6	4
7	Thermo-mechanical, antimicrobial and biocompatible properties of PVC blends based on imidazolium ionic liquids. Materials Science and Engineering C, 2021, 122, 111920.	7.3	15
8	Innovative Polymeric Hybrid Nanocomposites for Application in Photocatalysis. Polymers, 2021, 13, 1184.	4.5	7
9	Active Lightâ€Powered Antibiofilm ZnO Micromotors with Chemically Programmable Properties. Advanced Functional Materials, 2021, 31, 2101178.	14.9	52
10	EVA Films Loaded with Layered Double Hydroxide (LDH) Modified with Methacrylic Anion: Effect of the Nanohybrid Filler on the Photodegradation Phenomena. Polymers, 2021, 13, 2525.	4.5	0
11	Smart nanocomposites of chitosan/alginate nanoparticles loaded with copper oxide as alternative nanofertilizers. Environmental Science: Nano, 2021, 8, 174-187.	4.3	41
12	Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts. Chemical Engineering Journal, 2020, 379, 122309.	12.7	124
13	The role of solvent on the formulation of graphene/polyporphyrin hybrid material versus photocatalytic activity. Polymer Bulletin, 2020, 77, 2073-2087.	3.3	4
14	Properties of Biodegradable Films Based on Poly(butylene Succinate) (PBS) and Poly(butylene) Tj ETQq0 0 0 rgB1	/Qverloch	10 Tf 50 22
15	Heterogenized Imidazolium-Based Ionic Liquids in Pebax®Rnew. Thermal, Gas Transport and	4.5	9

	Antimicrobial Hopercies. Forymers, 2020, 12, 1417.		
16	N-methyl-D-glucamine based cryogels as reusable sponges to enhance heavy metals removal from water. Chemical Engineering Journal, 2020, 399, 125753.	12.7	13
17	Role of Organo-Modifier and Metal Impurities of Commercial Nanoclays in the Photo- and Thermo-Oxidation of Polyamide 11 Nanocomposites. Polymers, 2020, 12, 1034.	4.5	4
18	Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chemical Engineering Journal, 2019, 367, 180-188.	12.7	119

SABRINA CARROCCIO

#	Article	IF	CITATIONS
19	Hybrid nickel-free graphene/porphyrin rings for photodegradation of emerging pollutants in water. RSC Advances, 2019, 9, 30182-30194.	3.6	17
20	Freestanding photocatalytic materials based on 3D graphene and polyporphyrins. Scientific Reports, 2018, 8, 5001.	3.3	34
21	Halloysite nanotubes and thymol as photo protectors of biobased polyamide 11. Polymer Degradation and Stability, 2018, 152, 43-51.	5.8	25
22	Polymeric platform for the growth of chemically anchored ZnO nanostructures by ALD. RSC Advances, 2018, 8, 521-530.	3.6	7
23	Influence of the Preparation Method and Photo-Oxidation Treatment on the Thermal and Gas Transport Properties of Dense Films Based on a Poly(ether-block-amide) Copolymer. Materials, 2018, 11, 1326.	2.9	28
24	ZnO–pHEMA Nanocomposites: An Ecofriendly and Reusable Material for Water Remediation. ACS Applied Materials & Interfaces, 2018, 10, 40100-40110.	8.0	47
25	Synthesis of the ferrocenyl analogue of clotrimazole drug. Journal of Organometallic Chemistry, 2017, 830, 56-61.	1.8	13
26	Carbon nanotubes-based nanohybrids for multifunctional nanocomposites. Journal of King Saud University - Science, 2017, 29, 502-509.	3.5	8
27	Grafting of Hindered Phenol Groups onto Ethylene/α-Olefin Copolymer by Nitroxide Radical Coupling. Polymers, 2017, 9, 670.	4.5	13
28	Preparation of poly(glycolide-co-lactide)s through a green process: Analysis of structural, thermal, and barrier properties. Reactive and Functional Polymers, 2016, 109, 70-78.	4.1	14
29	Grafting of polymer chains on the surface of carbon nanotubes via nitroxide radical coupling reaction. Polymer International, 2016, 65, 48-56.	3.1	13
30	Multi-functional polyhedral oligomeric silsesquioxane-functionalized carbon nanotubes for photo-oxidative stable Ultra-High Molecular Weight Polyethylene-based nanocomposites. European Polymer Journal, 2016, 75, 525-537.	5.4	19
31	Advanced ultraâ€high molecular weight polyethylene/antioxidantâ€functionalized carbon nanotubes nanocomposites with improved thermoâ€oxidative resistance. Journal of Applied Polymer Science, 2015, 132, .	2.6	16
32	Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state – Part I: Thermal and thermo-oxidative degradation of polyamide 11. Polymer, 2015, 72, 134-141.	3.8	54
33	Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state – Part II: Thermal and thermo-oxidative degradation of polyamide 11/organo-clay nanocomposites. Polymer, 2015, 73, 102-110.	3.8	38
34	Thermo-oxidative resistant nanocomposites containing novel hybrid-nanoparticles based on natural polyphenol and carbon nanotubes. Polymer Degradation and Stability, 2015, 115, 129-137.	5.8	36
35	Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight Polyethylene-based nanocomposites. Composites Part B: Engineering, 2015, 82, 196-204.	12.0	37
36	Immobilization of natural anti-oxidants on carbon nanotubes and aging behavior of ultra-high		4

molecular weight polyethylene-based nanocomposites. , 2014, , .

SABRINA CARROCCIO

#	Article	IF	CITATIONS
37	Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Analytica Chimica Acta, 2014, 808, 18-43.	5.4	73
38	Heat-Resistant Fully Bio-Based Nanocomposite Blends Based on Poly(lactic acid). Macromolecular Materials and Engineering, 2014, 299, 31-40.	3.6	60
39	Functionalization of aliphatic polyesters by nitroxide radical coupling. Polymer Chemistry, 2014, 5, 5656.	3.9	20
40	α-Tocopherol-induced radical scavenging activity in carbon nanotubes for thermo-oxidation resistant ultra-high molecular weight polyethylene-based nanocomposites. Carbon, 2014, 74, 14-21.	10.3	48
41	Using matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight mass spectrometry for the characterization of functionalized carbon nanotubes. Rapid Communications in Mass Spectrometry, 2013, 27, 1359-1366.	1.5	6
42	Oxidantâ€Dependent REDOX Responsiveness of Polysulfides. Macromolecular Chemistry and Physics, 2012, 213, 2052-2061.	2.2	57
43	Endâ€group rearrangements in poly(propylene sulfide) matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight analysis. Experimental evidence and possible mechanisms. Rapid Communications in Mass Spectrometry, 2012, 26, 2158-2164.	1.5	4
44	A Snapshot of Thermoâ€Oxidative Degradation Products in Poly(bisphenol A carbonate) by Electrospray Ionization Mass Spectrometry and Matrixâ€Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry. Macromolecular Chemistry and Physics, 2011, 212, 2648-2666.	2.2	7
45	Thermo-oxidative processes in biodegradable poly(butylene succinate). Polymer Degradation and Stability, 2009, 94, 1825-1838.	5.8	54
46	Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Investigation of Nylon 6 and Nylon 66 Thermo-Oxidation Products. European Journal of Mass Spectrometry, 2007, 13, 397-408.	1.0	13
47	Current Trends in Matrix-Assisted Laser Desorption/Ionization of Polymeric Materials. European Journal of Mass Spectrometry, 2005, 11, 1-14.	1.0	29
48	New Vistas in Polymer Degradation. Thermal Oxidation Processes in Poly(ether imide). Macromolecules, 2005, 38, 6849-6862.	4.8	21
49	Comparison of Photooxidation and Thermal Oxidation Processes in Poly(ether imide). Macromolecules, 2005, 38, 6863-6870.	4.8	13
50	MALDI Investigation of Photooxidation in Aliphatic Polyesters:Â Poly(butylene succinate). Macromolecules, 2004, 37, 6576-6586.	4.8	49
51	MALDI Investigation of the Photooxidation of Nylon-66. Macromolecules, 2004, 37, 6037-6049.	4.8	33
52	Photo-oxidation products of polyetherimide ULTEM determined by MALDI-TOF-MS. Kinetics and mechanisms. Polymer Degradation and Stability, 2003, 80, 459-476.	5.8	19
53	New Vistas in the Photo-Oxidation of Nylon 6. Macromolecules, 2003, 36, 7499-7507.	4.8	28
54	Mechanisms of Thermal Oxidation of Poly(bisphenol A carbonate). Macromolecules, 2002, 35, 4297-4305.	4.8	59

4

SABRINA CARROCCIO

#	Article	IF	CITATIONS
55	Thermal and themoxidative degradation processes in poly(bisphenol a carbonate). Journal of Analytical and Applied Pyrolysis, 2002, 64, 229-247.	5.5	61
56	Thermal degradation of poly(ethylene oxide–propylene oxide–ethylene oxide) triblock copolymer: comparative study by SEC/NMR, SEC/MALDI-TOF-MS and SPME/GC-MS. Polymer, 2002, 43, 1081-1094.	3.8	95
57	Thermal oxidation of poly(bisphenol A carbonate) investigated by SEC/MALDI. Polymer Degradation and Stability, 2002, 77, 137-146.	5.8	43
58	Recent Advances in MALDI Mass Spectrometry of Polymers. Macromolecular Symposia, 2001, 169, 101-112.	0.7	16
59	Matrix-assisted laser desorption/ionisation time-of-flight characterisation of biodegradable aliphatic copolyesters. Rapid Communications in Mass Spectrometry, 2000, 14, 1513-1522.	1.5	35
60	Analysis of poly(bisphenol A carbonate) by size exclusion chromatography/matrix-assisted laser desorption/ionization. 2. Self-association due to phenol end groups. , 1999, 13, 2268-2277.		20
61	Thermal degradation mechanisms of polyetherimide investigated by direct pyrolysis mass spectrometry. Macromolecular Chemistry and Physics, 1999, 200, 2345-2355.	2.2	56
62	MALDIâ^'TOF Investigation of Polymer Degradation. Pyrolysis of Poly(bisphenol A carbonate). Macromolecules, 1999, 32, 8821-8828.	4.8	72
63	Analysis of poly(bisphenol A carbonate) by size exclusion chromatography/matrixâ€assisted laser desorption/ionization. 1. End group and molar mass determination. Rapid Communications in Mass Spectrometry, 1999, 13, 2260-2267.	1.5	1