Andrey V Morgun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7010462/publications.pdf

Version: 2024-02-01

840585 642610 46 594 11 23 citations h-index g-index papers 53 53 53 766 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reproducibility of developmental neuroplasticity in <i>in vitro</i> brain tissue models. Reviews in the Neurosciences, 2022, 33, 531-554.	1.4	1
2	Modulation of Rage and CD147 in Cerebral Amyloid Angiopathy <i>in vitro</i> . Drug Development and Registration, 2022, 11, 169-173.	0.2	0
3	Features of expression of ß-amyloid in cerebral endothelial cells in experimental Alzheimer's disease. Molekulyarnaya Meditsina (Molecular Medicine), 2021, 19, 26-33.	0.0	1
4	Aberrant angiogenesis in brain tissue in experimental Alzheimer's disease. Bulletin of Siberian Medicine, 2021, 19, 46-52.	0.1	3
5	Blood–Brain Barrier and Neurovascular Unit In Vitro Models for Studying Mitochondria-Driven Molecular Mechanisms of Neurodegeneration. International Journal of Molecular Sciences, 2021, 22, 4661.	1.8	22
6	Blood–Brain Barrier Breakdown in Stress and Neurodegeneration: Biochemical Mechanisms and New Models for Translational Research. Biochemistry (Moscow), 2021, 86, 746-760.	0.7	6
7	Overview of existing <i>in vitro</i> BBB models: advantages and disadvantages, current state and future prospects. Complex Issues of Cardiovascular Diseases, 2021, 10, 109-120.	0.3	O
8	CD157 and Brain Immune System in (Patho)physiological Conditions: Focus on Brain Plasticity. Frontiers in Immunology, 2020, 11, 585294.	2.2	8
9	Current approaches to modeling the virtual reality in rodents for the assessment of brain plasticity and behavior. Journal of Neuroscience Methods, 2020, 335, 108616.	1.3	6
10	Hypercapnia potentiates HIF- $1\hat{l}_{\pm}$ activation in the brain of rats exposed to intermittent hypoxia. Respiratory Physiology and Neurobiology, 2020, 278, 103442.	0.7	6
11	Astrocyte-Mediated Regulation of Cell Development in the Model of Neurogenic Niche in Vitro Treated with Al ² 1-42. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2020, 14, 6-14.	0.2	1
12	Clinical manifestations of vitamin B12 deficiency anemia in children from different age groups. Voprosy Prakticheskoi Pediatrii, 2020, 15, 18-26.	0.0	0
13	Mouse hippocampal neurospheres negatively regulate cerebral angiogenesis. Fundamental and Clinical Medicine, 2020, 5, 18-23.	0.1	1
14	The use of convolutional neural networks to identify artifacts of cells micrographs in biomedical research. Journal of Physics: Conference Series, 2019, 1399, 033089.	0.3	1
15	CD147 аа Đ¹½Đ¾Đ²Đ°Ñ•Đ¼Đ¾Đ»ĐμĐ°ÑƒĐ»Đ°-Đ¼Đ¸ÑˆĐμĐ½ÑŒ ĐƊ»Ñ•Ñ"Đ°Ñ€Đ¼Đ°Đ°Đ¾Ñ,ĐμÑ€Đ°	°Đ Æ Đ∰, Đ²	₽₽₩₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
16	Brain ependymocytes in neurogenesis and maintaining integrity of blood-cerebrospinal fluid barrier. Fundamental and Clinical Medicine, 2019, 4, 83-94.	0.1	1
17	Early Life Stress: Consequences for the Development of the Brain. Neuroscience and Behavioral Physiology, 2018, 48, 233-250.	0.2	13
18	Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Reviews in the Neurosciences, 2018, 29, 567-591.	1.4	45

#	Article	IF	CITATIONS
19	Plasticity of Adipose Tissue-Derived Stem Cells and Regulation of Angiogenesis. Frontiers in Physiology, 2018, 9, 1656.	1.3	45
20	The inhibitory effect of LPS on the expression of GPR81 lactate receptor in blood-brain barrier model in vitro. Journal of Neuroinflammation, 2018, 15, 196.	3.1	41
21	Designing in vitro Blood-Brain Barrier Models Reproducing Alterations in Brain Aging. Frontiers in Aging Neuroscience, 2018, 10, 234.	1.7	19
22	MODERN TECHNOLOGIES OF BRAIN STEM CELLS CULTURE. Tsitologiya, 2018, 60, 587-597.	0.2	0
23	Secret Life of Tiny Blood Vessels: Lactate, Scaffold and Beyond. Lecture Notes in Computer Science, 2017, , 591-601.	1.0	2
24	Expression of thrombospondin-1 and CD36 and CD47 receptors in the rat brain after exposure to damaging factors in the early postnatal period. Biology Bulletin, 2017, 44, 307-314.	0.1	0
25	Features of blood-brain barrier formation affected by the modulation of HIF activity in astroglial and neuronal cells in vitro. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2017, 11, 81-86.	0.2	1
26	Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit. Frontiers in Cellular and Infection Microbiology, 2017, 7, 276.	1.8	112
27	Differential Roles of Environmental Enrichment in Alzheimer's Type of Neurodegeneration and Physiological Aging. Frontiers in Aging Neuroscience, 2017, 9, 245.	1.7	30
28	Endothelial Progenitor Cells Physiology and Metabolic Plasticity in Brain Angiogenesis and Blood-Brain Barrier Modeling. Frontiers in Physiology, 2016, 7, 599.	1.3	42
29	Glial Dysfunction and Blood-Brain Barrier Impairment in the Developing Brain. Advances in Neuroimmune Biology, 2016, 6, 69-82.	0.7	1
30	Enriched Environment Affects Positively a Progression of Neurodegeneration: Elastic Maps-Based Analysis. Lecture Notes in Computer Science, 2016, , 505-514.	1.0	0
31	Tight junction proteins of cerebral endothelial cells in early postnatal development. Cell and Tissue Biology, 2016, 10, 372-377.	0.2	9
32	Perinatal Brain Injury is Accompanied by Disturbances in Expression of SLC Protein Superfamily in Endotheliocytes of Hippocampal Microvessels. Bulletin of Experimental Biology and Medicine, 2016, 161, 770-774.	0.3	3
33	Regenerative potential of the brain: Composition and forming of regulatory microenvironment in neurogenic niches. Human Physiology, 2016, 42, 865-873.	0.1	6
34	Current advances in cell electrophysiology: applications for the analysis of intercellular communications within the neurovascular unit. Reviews in the Neurosciences, 2016, 27, 365-376.	1.4	5
35	The Role of Ion Channels Expressed in Cerebral Endothelial Cells in the Functional Integrity of the Blood-Brain Barrier (Review). Sovremennye Tehnologii V Medicine, 2016, 8, 241-250.	0.4	6
36	Expression of Glutamate and Glutamine Transporter Proteins in Neurovascular Unit Cells In Vitro. Bulletin of Experimental Biology and Medicine, 2015, 159, 614-616.	0.3	1

3

#	Article	lF	CITATIONS
37	Glycolysis-mediated control of blood-brain barrier development and function. International Journal of Biochemistry and Cell Biology, 2015, 64, 174-184.	1.2	50
38	In Vitro Modeling of Brain Progenitor Cell Development under the Effect of Environmental Factors. Bulletin of Experimental Biology and Medicine, 2015, 159, 546-549.	0.3	8
39	The coexpression of CD157/CD11b/CD18 in an experimental model of Parkinson's disease. Neurochemical Journal, 2015, 9, 279-283.	0.2	3
40	Establishment of neurogenic microenvironment in the neurovascular unit: the connexin 43 story. Reviews in the Neurosciences, 2014, 25, 97-111.	1.4	34
41	STRUCTURAL AND FUNCTIONAL HETEROGENEITY OF ASTROCYTES IN THE BRAIN: ROLE IN NEURODEGENERATION AND NEUROINFLAMMATION. Bulletin of Siberian Medicine, 2014, 13, 138-148.	0.1	11
42	MODERN METHODS OF PERINATAL HYPOXIC-ISCHEMIC BRAIN INJURY MODELING IN VIVO. Voprosy Sovremennoi Pediatrii - Current Pediatrics, 2014, 13, 31.	0.1	2
43	Perinatal Hypoxic-Ischemic Brain Injury Affects the Glutamatergic Signal Transduction Coupled with Neuronal ADP-Ribosyl Cyclase Activity. Bulletin of Experimental Biology and Medicine, 2011, 150, 583-586.	0.3	2
44	Changes in expression and activity of CD38 in astroglial cells after impairment of the neuron-glia relationship in the brain induced by perinatal hypoxia-ischemia. Neurochemical Journal, 2009, 3, 207-213.	0.2	3
45	Perinatal Hypoxic and Ischemic Damage to the Central Nervous System Causes Changes in the Expression of Connexin 43 and CD38 and ADP-Ribosyl Cyclase Activity in Brain Cells. Bulletin of Experimental Biology and Medicine, 2008, 146, 733-736.	0.3	6
46	NAD+-dependent mechanisms of disturbances of viability of brain cells during the acute period of hypoxic-ischemic perinatal injury. Neurochemical Journal, 2008, 2, 215-221.	0.2	1