Karl Toischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7010382/publications.pdf Version: 2024-02-01

KADI TOISCHED

#	Article	IF	CITATIONS
1	Differential Cardiac Remodeling in Preload Versus Afterload. Circulation, 2010, 122, 993-1003.	1.6	267
2	Altered Na+Currents in Atrial Fibrillation. Journal of the American College of Cardiology, 2010, 55, 2330-2342.	1.2	249
3	Ca ²⁺ /Calmodulin-Dependent Protein Kinase II and Protein Kinase A Differentially Regulate Sarcoplasmic Reticulum Ca ²⁺ Leak in Human Cardiac Pathology. Circulation, 2013, 128, 970-981.	1.6	135
4	Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. European Heart Journal, 2016, 38, ehw333.	1.0	115
5	Echocardiographic evaluation of diastolic function in mouse models of heart disease. Journal of Molecular and Cellular Cardiology, 2018, 114, 20-28.	0.9	100
6	Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease. Journal of Molecular and Cellular Cardiology, 2013, 61, 111-122.	0.9	89
7	Cardiacâ€specific succinate dehydrogenase deficiency in Barth syndrome. EMBO Molecular Medicine, 2016, 8, 139-154.	3.3	69
8	Relevance of Brain Natriuretic Peptide in Preload-Dependent Regulation of Cardiac Sarcoplasmic Reticulum Ca 2+ ATPase Expression. Circulation, 2006, 113, 2724-2732.	1.6	57
9	Molecular and structural transition mechanisms in longâ€ŧerm volume overload. European Journal of Heart Failure, 2016, 18, 362-371.	2.9	53
10	Proteasome-Dependent Regulation of Distinct Metabolic States During Long-Term Culture of Human iPSC-Derived Cardiomyocytes. Circulation Research, 2019, 125, 90-103.	2.0	52
11	K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum. Basic Research in Cardiology, 2010, 105, 279-287.	2.5	44
12	Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. Journal of Clinical Investigation, 2017, 127, 4285-4296.	3.9	31
13	Sarcoplasmic reticulum calcium leak contributes to arrhythmia but not to heart failure progression. Science Translational Medicine, 2018, 10, .	5.8	30
14	Elevated Afterload, Neuroendocrine Stimulation, and Human Heart Failure Increase BNP Levels and Inhibit Preload-Dependent SERCA Upregulation. Circulation: Heart Failure, 2008, 1, 265-271.	1.6	24
15	Myocardial adaptation of energy metabolism to elevated preload depends on calcineurin activity. Basic Research in Cardiology, 2008, 103, 232-243.	2.5	21
16	Real-time cardiovascular magnetic resonance T1 and extracellular volume fraction mapping for tissue characterisation in aortic stenosis. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 46.	1.6	18
17	Epigenetic gene expression links heart failure to memory impairment. EMBO Molecular Medicine, 2021, 13, e11900.	3.3	15
18	CRISPLD1: a novel conserved target in the transition to human heart failure. Basic Research in Cardiology, 2020, 115, 27.	2.5	13

Karl Toischer

#	Article	IF	CITATIONS
19	Detrimental proarrhythmogenic interaction of Ca2+/calmodulin-dependent protein kinase II and NaV1.8 in heart failure. Nature Communications, 2021, 12, 6586.	5.8	13
20	The contractile adaption to preload depends on the amount of afterload. ESC Heart Failure, 2017, 4, 468-478.	1.4	12
21	Proteomic analysis of short-term preload-induced eccentric cardiac hypertrophy. Journal of Translational Medicine, 2016, 14, 149.	1.8	11
22	BNP controls early load-dependent regulation of SERCA through calcineurin. Basic Research in Cardiology, 2010, 105, 795-804.	2.5	10
23	Cell Cycle–Mediated Cardiac Regeneration in the Mouse Heart. Current Cardiology Reports, 2019, 21, 131.	1.3	10
24	Mechanical loadâ€dependent cardiac ER stress in vitro and in vivo: Effects of preload and afterload. FEBS Letters, 2012, 586, 1363-1369.	1.3	4
25	Genetic deletion of calcium/calmodulin-dependent protein kinase type II delta does not mitigate adverse myocardial remodeling in volume-overloaded hearts. Scientific Reports, 2019, 9, 9889.	1.6	4
26	Regulation of cyclic adenosine monophosphate release by selective β2-adrenergic receptor stimulation in human terminal failing myocardium before and after ventricular assist device support. Journal of Heart and Lung Transplantation, 2012, 31, 1127-1135.	0.3	2
27	Different activation of <scp>MAPKs</scp> and <scp>Akt/GSK3β</scp> after preload vs. afterload elevation. ESC Heart Failure, 2022, 9, 1823-1831.	1.4	2
28	Response to Letter Regarding Article, "Differential Cardiac Remodeling in Preload Versus Afterload― Circulation, 2011, 123, .	1.6	0