
Ed J Newbigin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7010345/publications.pdf Version: 2024-02-01

FD I NEWRICIN

#	Article	IF	CITATIONS
1	5-grass-pollen SLIT effectiveness in seasonal allergic rhinitis: Impact of sensitization to subtropical grass pollen. World Allergy Organization Journal, 2022, 15, 100632.	1.6	1
2	Children With Food Allergy Are at Risk of Lower Lung Function on High-Pollen Days. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 2144-2153.e10.	2.0	4
3	, a new Australian species in. Australian Systematic Botany, 2021, 34, 477-484.	0.3	9
4	A Pilot Forecasting System for Epidemic Thunderstorm Asthma in Southeastern Australia. Bulletin of the American Meteorological Society, 2021, 102, E399-E420.	1.7	20
5	Outdoor pollenâ€related changes in lung function and markers of airway inflammation: A systematic review and metaâ€analysis. Clinical and Experimental Allergy, 2021, 51, 636-653.	1.4	13
6	A systematic review of the role of grass pollen and fungi in thunderstorm asthma. Environmental Research, 2020, 181, 108911.	3.7	41
7	Development and evaluation of pollen source methodologies for the Victorian Grass Pollen Emissions Module VGPEM1.0. Geoscientific Model Development, 2019, 12, 2195-2214.	1.3	14
8	Near-ground effect of height on pollen exposure. Environmental Research, 2019, 174, 160-169.	3.7	58
9	Dynamic ecological observations from satellites inform aerobiology of allergenic grass pollen. Science of the Total Environment, 2018, 633, 441-451.	3.9	37
10	Thunderstorm asthma outbreak of November 2016: a natural disaster requiring planning. Medical Journal of Australia, 2017, 207, 235-237.	0.8	38
11	A Glycosyltransferase from <i>Nicotiana alata</i> Pollen Mediates Synthesis of a Linear (1,5)-α-L-Arabinan When Expressed in Arabidopsis. Plant Physiology, 2016, 170, 1962-1974.	2.3	17
12	Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand. Aerobiologia, 2016, 32, 289-302.	0.7	34
13	Differences in grass pollen allergen exposure across Australia. Australian and New Zealand Journal of Public Health, 2015, 39, 51-55.	0.8	42
14	Do human rhinovirus infections and food allergy modify grass pollen–induced asthma hospital admissions in children?. Journal of Allergy and Clinical Immunology, 2015, 136, 1118-1120.e2.	1.5	19
15	Trans-disciplinary research in synthesis of grass pollen aerobiology and its importance for respiratory health in Australasia. Science of the Total Environment, 2015, 534, 85-96.	3.9	38
16	Are designer plant cell walls a realistic aspiration or will the plasticity of the plant's metabolism win out?. Current Opinion in Biotechnology, 2014, 26, 108-114.	3.3	50
17	The Macroecology of Airborne Pollen in Australian and New Zealand Urban Areas. PLoS ONE, 2014, 9, e97925.	1.1	58
18	In Vitro Grown Pollen Tubes of Nicotiana alata Actively Synthesise a Fucosylated Xyloglucan. PLoS ONE, 2013, 8, e77140.	1.1	33

ED J NEWBIGIN

#	Article	IF	CITATIONS
19	The role of seasonal grass pollen on childhood asthma emergency department presentations. Clinical and Experimental Allergy, 2012, 42, 799-805.	1.4	121
20	Karyotypic variation in Nicotiana section Suaveolentes. Genetic Resources and Crop Evolution, 2011, 58, 797-803.	0.8	15
21	On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia. International Journal of Biometeorology, 2011, 55, 613-622.	1.3	29
22	Comparative morphology and phylogeny of Nicotiana section Suaveolentes (Solanaceae) in Australia and the South Pacific. Australian Systematic Botany, 2011, 24, 61.	0.3	34
23	The CELLULOSE-SYNTHASE LIKE C (CSLC) Family of Barley Includes Members that Are Integral Membrane Proteins Targeted to the Plasma Membrane. Molecular Plant, 2009, 2, 1025-1039.	3.9	36
24	A barley <i>cellulose synthase-like CSLH</i> gene mediates (1,3;1,4)-β- <scp>d</scp> -glucan synthesis in transgenic <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5996-6001.	3.3	246
25	Callose and its Role in Pollen and Embryo Sac Development in Flowering Plants. , 2009, , 465-498.		4
26	Aberrant Cell Expansion in the elongation Mutants of Barley. Plant and Cell Physiology, 2009, 50, 554-571.	1.5	10
27	Population genetics of Ryparosa kurrangii (Achariaceae), a rare lowland rainforest tree. Biochemical Systematics and Ecology, 2009, 37, 334-340.	0.6	1
28	Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 2009, 60, 4089-4103.	2.4	375
29	RNase-Based Self-Incompatibility: Puzzled by <i>Pollen S</i> Â. Plant Cell, 2008, 20, 2286-2292.	3.1	43
30	Molecular control of the glucan synthase-like protein NaGSL1 and callose synthesis during growth of <i>Nicotiana alata</i> pollen tubes. Biochemical Journal, 2008, 414, 43-52.	1.7	35
31	Expression of 10 S-Class <i>SLF-like</i> Genes in <i>Nicotiana alata</i> Pollen and Its Implications for Understanding the Pollen Factor of the S Locus. Genetics, 2007, 177, 2171-2180.	1.2	52
32	Modelling atmospheric concentrations of grass pollen using meteorological variables in Melbourne, Australia. International Journal of Environmental Health Research, 2007, 17, 361-368.	1.3	11
33	Do levels of airborne grass pollen influence asthma hospital admissions?. Clinical and Experimental Allergy, 2007, 37, 1641-1647.	1.4	93
34	Proteomic and biochemical evidence links the callose synthase in <i>Nicotiana alata</i> pollen tubes to the product of the <i>NaGSL1</i> gene. Plant Journal, 2007, 52, 147-156.	2.8	56
35	Temporal and spatial appearance of wall polysaccharides during cellularization of barley (Hordeum) Tj ETQq1 1	0.784314 1.6	rgBT /Overloo 130
36	The evolutionary dynamics of self-incompatibility systems. Trends in Genetics, 2005, 21, 500-505.	2.9	38

Ed J Newbigin

#	Article	IF	CITATIONS
37	Maximum-Likelihood Estimation of Rates of Recombination Within Mating-Type Regions. Genetics, 2004, 167, 2097-2109.	1.2	15
38	Tom22', an 8-kDa trans-Site Receptor in Plants and Protozoans, Is a Conserved Feature of the TOM Complex That Appeared Early in the Evolution of Eukaryotes. Molecular Biology and Evolution, 2004, 21, 1557-1564.	3.5	101
39	Model-based analysis of the likelihood of gene introgression from genetically modified crops into wild relatives. Ecological Modelling, 2003, 162, 199-209.	1.2	39
40	Sex and self-denial. Nature, 2003, 423, 229-230.	13.7	7
41	Patterns of Variation Within Self-Incompatibility Loci. Molecular Biology and Evolution, 2003, 20, 1778-1794.	3.5	52
42	An investigation of genetic variation in Banksia integrifolia (Proteaceae) by the use of the AFLP technique. Australian Systematic Botany, 2002, 15, 9.	0.3	2
43	The 1.55 Ã resolution structure of Nicotiana alata SF11-RNase associated with gametophytic self-incompatibility. Journal of Molecular Biology, 2001, 314, 103-112.	2.0	61
44	Genetic variation in Banksia saxicola (Proteaceae), a rare Australian plant with a markedly disjunct distribution. Plant Systematics and Evolution, 2001, 227, 105-115.	0.3	6
45	Crystallization and preliminary X-ray crystallographic analysis ofS-allelic glycoproteinSF11-RNase fromNicotiana alata. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 143-144.	2.5	5
46	Genetic analysis of Nicotiana pollen-part mutants is consistent with the presence of an S-ribonuclease inhibitor at the S locus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 15372-15376.	3.3	116
47	Characterization of Rny1, the Saccharomyces cerevisiae member of the T2 RNase family of RNases: Unexpected functions for ancient enzymes?. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1018-1023.	3.3	79
48	Pollen Tubes of Nicotiana alata Express Two Genes from Different Î ² -Glucan Synthase Families. Plant Physiology, 2001, 125, 2040-2052.	2.3	152
49	On the Origin of Self-Incompatibility Haplotypes: Transition Through Self-Compatible Intermediates. Genetics, 2001, 157, 1805-1817.	1.2	116
50	A genetic map of the Nicotiana alata S locus that includes three pollen-expressed genes. Theoretical and Applied Genetics, 2000, 100, 956-964.	1.8	28
51	Regulation of LAT52 promoter activity during pollen tube growth through the pistil of Nicotiana alata Sexual Plant Reproduction, 2000, 12, 347-352.	2.2	9
52	How Do Plant Mitochondria Avoid Importing Chloroplast Proteins? Components of the Import Apparatus Tom20 and Tom22 from Arabidopsis Differ from Their Fungal Counterparts1. Plant Physiology, 2000, 123, 811-816.	2.3	78
53	Evolutionary Dynamics of Dual-Specificity Self-Incompatibility Alleles. Plant Cell, 2000, 12, 310-312.	3.1	47
54	Pollen-expressed S-RNases are not involved in self-incompatibility in Lycopersicon peruvianum. Sexual Plant Reproduction, 1999, 12, 76-87.	2.2	27

Ed J Newbigin

#	Article	IF	CITATIONS
55	A relic S-RNase is expressed in the styles of self-compatibleNicotiana sylvestris. Plant Journal, 1998, 16, 591-599.	2.8	36
56	Structural Analysis and Molecular Model of a Self-Incompatibility RNase from Wild Tomato1. Plant Physiology, 1998, 116, 463-469.	2.3	38
57	The evolution of self-incompatibility: a molecular voyeur's perspective. Sexual Plant Reproduction, 1996, 9, 357-361.	2.2	16
58	A Molecular Perspective on Pollination in Flowering Plants. Cell, 1996, 85, 141-144.	13.5	62
59	A retrotransposon-like sequence linked to the S-locus ofNicotiana alata is expressed in styles in response to touch. Molecular Genetics and Genomics, 1996, 250, 180-188.	2.4	18
60	Molecular characterisation of an S-like RNase of Nicotiana alata that is induced by phosphate starvation. Plant Molecular Biology, 1996, 31, 227-238.	2.0	82
61	A retrotransposon-like sequence linked to the S-locus of. Molecular Genetics and Genomics, 1996, 250, 180.	2.4	5
62	The evolution of self-incompatibility: a molecular voyeur's perspective. Sexual Plant Reproduction, 1996, 9, 357-361.	2.2	2
63	Understanding and controlling plant development. Trends in Biotechnology, 1995, 13, 338-343.	4.9	3
64	The S-locus of Nicotiana alata: genomic organization and sequence analysis of two S-RNase alleles. Plant Molecular Biology, 1995, 28, 847-858.	2.0	48
65	Self-incompatibility in flowering plants. Current Opinion in Genetics and Development, 1995, 5, 640-645.	1.5	28
66	Self-compatibility in aLycopersicon peruvianum variant (LA2157) is associated with a lack of style S-RNase activity. Theoretical and Applied Genetics, 1994, 88, 859-864.	1.8	84
67	Transgenic tobacco plants which express thechiA gene fromSerratia marcescens have enhanced tolerance toRhizoctonia solani. Transgenic Research, 1994, 3, 90-98.	1.3	27
68	Glycoprotein E2 of Classical Swine Fever Virus: Expression in Insect Cells and Identification as a Ribonuclease. Virology, 1994, 200, 558-565.	1.1	105
69	Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6511-6514.	3.3	159
70	S-RNase Gene of Nicotiana alata Is Expressed in Developing Pollen. Plant Cell, 1993, 5, 1771.	3.1	8
71	Gametophytic Self-Incompatibility Systems. Plant Cell, 1993, 5, 1315.	3.1	42
72	Pea convicilin: structure and primary sequence of the protein and expression of a gene in the seeds of transgenic tobacco. Planta, 1990, 180, 461-470.	1.6	47

#	Article	IF	CITATIONS
73	The sequence of a pea vicilin gene and its expression in transgenic tobacco plants. Plant Molecular Biology, 1988, 11, 683-695.	2.0	106