Michael L Ginger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7010135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
2	Flagellar motility is required for the viability of the bloodstream trypanosome. Nature, 2006, 440, 224-227.	13.7	453
3	The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility. Cell, 2010, 140, 631-642.	13.5	399
4	Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology, 2013, 14, R11.	13.9	296
5	Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Molecular and Biochemical Parasitology, 2003, 126, 129-142.	0.5	268
6	Why are parasite contingency genes often associated with telomeres?. International Journal for Parasitology, 2003, 33, 29-45.	1.3	177
7	Molecular paleontology and complexity in the last eukaryotic common ancestor. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 373-396.	2.3	170
8	Autophagy in protists. Autophagy, 2011, 7, 127-158.	4.3	148
9	Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3416-3421.	3.3	137
10	Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism. Current Biology, 2016, 26, 161-172.	1.8	137
11	Swimming with protists: perception, motility and flagellum assembly. Nature Reviews Microbiology, 2008, 6, 838-850.	13.6	135
12	Autophagy in parasitic protists: Unique features and drug targets. Molecular and Biochemical Parasitology, 2011, 177, 83-99.	0.5	111
13	More than one way to build a flagellum: comparative genomics of parasitic protozoa. Current Biology, 2004, 14, R611-R612.	1.8	109
14	Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biology, 2019, 17, 11.	1.7	98
15	Organic matter assimilation and selective feeding by holothurians in the deep sea: some observations and comments. Progress in Oceanography, 2001, 50, 407-421.	1.5	91
16	Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. Journal of Cell Science, 2006, 119, 3935-3943.	1.2	90
17	Order within a mosaic distribution of mitochondrial <i>c</i> â€ŧype cytochrome biogenesis systems?. FEBS Journal, 2008, 275, 2385-2402.	2.2	79
18	Ku Is Important for Telomere Maintenance, but Not for Differential Expression of Telomeric VSG Genes, in African Trypanosomes. Journal of Biological Chemistry, 2002, 277, 21269-21277.	1.6	71

MICHAEL L GINGER

#	Article	IF	CITATIONS
19	The Biosynthetic Incorporation of the Intact Leucine Skeleton into Sterol by the Trypanosomatid Leishmania mexicana. Journal of Biological Chemistry, 2001, 276, 11674-11682.	1.6	66
20	Protein Targeting of an Unusual, Evolutionarily Conserved Adenylate Kinase to a Eukaryotic Flagellum. Molecular Biology of the Cell, 2004, 15, 3257-3265.	0.9	66
21	Maturation of the unusual single-cysteine (XXXCH) mitochondrial c-type cytochromes found in trypanosomatids must occur through a novel biogenesis pathway. Biochemical Journal, 2004, 383, 537-542.	1.7	62
22	Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology. Journal of Cell Biology, 2014, 206, 377-384.	2.3	57
23	Autophagy in protists: examples of secondary loss, lineage-specific innovations, and the conundrum of remodeling a single mitochondrion. Autophagy, 2009, 5, 784-794.	4.3	56
24	Intermediary Metabolism in Protists: a Sequence-based View of Facultative Anaerobic Metabolism in Evolutionarily Diverse Eukaryotes. Protist, 2010, 161, 642-671.	0.6	55
25	Intracellular Positioning of Isoforms Explains an Unusually Large Adenylate Kinase Gene Family in the Parasite Trypanosoma brucei. Journal of Biological Chemistry, 2005, 280, 11781-11789.	1.6	50
26	Niche metabolism in parasitic protozoa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 101-118.	1.8	50
27	Distinctive biochemistry in the trypanosome mitochondrial intermembrane space suggests a model for stepwise evolution of the MIA pathway for import of cysteineâ€rich proteins. FEBS Letters, 2008, 582, 2817-2825.	1.3	49
28	Cell Morphogenesis of Trypanosoma brucei Requires the Paralogous, Differentially Expressed Calpain-related Proteins CAP5.5 and CAP5.5V. Protist, 2009, 160, 576-590.	0.6	48
29	Peroxisomes in parasitic protists. Molecular and Biochemical Parasitology, 2016, 209, 35-45.	0.5	47
30	Rewiring and regulation of cross-compartmentalized metabolism in protists. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 831-845.	1.8	46
31	A preliminary investigation of the lipids of abyssal holothurians from the north-east Atlantic Ocean. Journal of the Marine Biological Association of the United Kingdom, 2000, 80, 139-146.	0.4	44
32	Ex Vivo and In Vitro Identification of a Consensus Promoter for VSG Genes Expressed by Metacyclic-Stage Trypanosomes in the Tsetse Fly. Eukaryotic Cell, 2002, 1, 1000-1009.	3.4	44
33	Moonlighting enzymes in parasitic protozoa. Parasitology, 2010, 137, 1467-1475.	0.7	43
34	Flagellum assembly and function during the Leishmania life cycle. Current Opinion in Microbiology, 2010, 13, 473-479.	2.3	42
35	Divergence of Erv1-Associated Mitochondrial Import and Export Pathways in Trypanosomes and Anaerobic Protists. Eukaryotic Cell, 2013, 12, 343-355.	3.4	42
36	The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Research in Microbiology, 2011, 162, 607-618.	1.0	40

MICHAEL L GINGER

#	Article	IF	CITATIONS
37	Flagellum attachment zone protein modulation and regulation of cell shape in <i>Trypanosoma brucei</i> life cycle transitions. Journal of Cell Science, 2015, 128, 3117-30.	1.2	40
38	Trypanosomatid Biology and Euglenozoan Evolution: New Insights and Shifting Paradigms Revealed through Genome Sequencing. Protist, 2005, 156, 377-392.	0.6	39
39	RNA Interference Mutant Induction In Vivo Demonstrates the Essential Nature of Trypanosome Flagellar Function during Mammalian Infection. Eukaryotic Cell, 2007, 6, 1248-1250.	3.4	38
40	Utilization of leucine and acetate as carbon sources for sterol and fatty acid biosynthesis by Old and New World Leishmania species, Endotrypanum monterogeii and Trypanosoma cruzi. FEBS Journal, 2000, 267, 2555-2566.	0.2	35
41	Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal <i>Trichomonas</i> homologues in trypanosomes. Molecular Microbiology, 2008, 69, 94-109.	1.2	35
42	TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Research, 2015, 43, D637-D644.	6.5	35
43	Calmodulin is Required for Paraflagellar Rod Assembly and Flagellum-Cell Body Attachment in Trypanosomes. Protist, 2013, 164, 528-540.	0.6	33
44	Elucidation of carbon sources used for the biosynthesis of fatty acids and sterols in the trypanosomatid Leishmania mexicana. Biochemical Journal, 1999, 342, 397-405.	1.7	32
45	Structure of a trypanosomatid mitochondrial cytochrome <i>c</i> with heme attached via only one thioether bond and implications for the substrate recognition requirements of heme lyase. FEBS Journal, 2009, 276, 2822-2832.	2.2	31
46	Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution. Parasitology, 2018, 145, 1311-1323.	0.7	31
47	Tubulin-binding cofactor C domain-containing protein TBCCD1 orchestrates cytoskeletal filament formation. Journal of Cell Science, 2013, 126, 5350-6.	1.2	28
48	Eukaryotic Flagella: Variations in Form, Function, and Composition during Evolution. BioScience, 2014, 64, 1103-1114.	2.2	28
49	Reductionist Pathways for Parasitism in Euglenozoans? Expanded Datasets Provide New Insights. Trends in Parasitology, 2021, 37, 100-116.	1.5	28
50	An Alternative Model for the Role of RP2 Protein in Flagellum Assembly in the African Trypanosome. Journal of Biological Chemistry, 2014, 289, 464-475.	1.6	25
51	Complexity and diversity in c-type cytochrome biogenesis systems. Biochemical Society Transactions, 2005, 33, 145-146.	1.6	19
52	Variant <i>c</i> -type cytochromes as probes of the substrate specificity of the <i>E. coli</i> cytochrome <i>c</i> maturation (Ccm) apparatus. Biochemical Journal, 2009, 419, 177-186.	1.7	18
53	Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biology, 2021, 19, 142.	1.7	18
54	Protein moonlighting in parasitic protists. Biochemical Society Transactions, 2014, 42, 1734-1739.	1.6	12

MICHAEL L GINGER

#	Article	IF	CITATIONS
55	Selfâ€Assembled Anionâ€Binding Cryptand for the Selective Liquid–Liquid Extraction of Phosphate Anions. Angewandte Chemie - International Edition, 2020, 59, 20480-20484.	7.2	12
56	Self-assembly of an anion receptor with metal-dependent kinase inhibition and potent in vitro anti-cancer properties. Nature Communications, 2021, 12, 3898.	5.8	11
57	Elucidation of carbon sources used for the biosynthesis of fatty acids and sterols in the trypanosomatid Leishmania mexicana. Biochemical Journal, 1999, 342, 397.	1.7	9
58	Probing why trypanosomes assemble atypical cytochrome c with an AxxCH haem-binding motif instead of CxxCH. Biochemical Journal, 2012, 448, 253-260.	1.7	8
59	Variation in Basal Body Localisation and Targeting of Trypanosome RP2 and FOR20 Proteins. Protist, 2017, 168, 452-466.	0.6	6
60	A centriolar FGR1 oncogene partner-like protein required for paraflagellar rod assembly, but not axoneme assembly in African trypanosomes. Open Biology, 2018, 8, 170218.	1.5	5
61	Divergent Cytochrome <i>c</i> Maturation System in Kinetoplastid Protists. MBio, 2021, 12, .	1.8	5
62	Evidence for Loss of a Partial Flagellar Glycolytic Pathway during Trypanosomatid Evolution. PLoS ONE, 2014, 9, e103026.	1.1	5
63	The evolution of organellar metabolism in unicellular eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 693-698.	1.8	4
64	Post-genomic views of a â€`unique' metabolism in the eukaryotic flagellum. Biochemical Society Transactions, 2005, 33, 975.	1.6	3
65	Proteomic insights into parasite biology. Parasitology, 2012, 139, 1101-1102.	0.7	3
66	Airyscan Superresolution Microscopy to Study Trypanosomatid Cell Biology. Methods in Molecular Biology, 2020, 2116, 449-461.	0.4	2
67	Carbon sources for fatty acid and sterol biosynthesis in Leishmania species. Biochemical Society Transactions, 1996, 24, 434S-434S.	1.6	1
68	Making the pathogen: Evolution and adaptation in parasitic protists. Molecular and Biochemical Parasitology, 2016, 209, 1-2.	0.5	1
69	Meeting Report: Euglenids in the Age of Symbiogenesis: Origins, Innovations, and Prospects, November 8-11, 2021. Protist, 2022, , 125894.	0.6	1
70	35 Years of Molecular and Biochemical Parasitology. Molecular and Biochemical Parasitology, 2014, 195, 75-76.	0.5	0
71	Analysis of Base Excision and Single-Strand Break Repair Activities in Trypanosomatid Extracts. Methods in Molecular Biology, 2020, 2116, 353-364.	0.4	0