
## Nancy M Washton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7010054/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Methyl-Driven Overhauser Dynamic Nuclear Polarization. Journal of Physical Chemistry Letters, 2022, 13, 4000-4006.                                                                                                                                                               | 4.6  | 13        |
| 2  | Rate Controlling in Low-Temperature Standard NH <sub>3</sub> -SCR: Implications from<br><i>Operando</i> EPR Spectroscopy and Reaction Kinetics. Journal of the American Chemical Society,<br>2022, 144, 9734-9746.                                                               | 13.7 | 17        |
| 3  | Remarkable self-degradation of Cu/SAPO-34 selective catalytic reduction catalysts during storage at ambient conditions. Catalysis Today, 2021, 360, 367-374.                                                                                                                     | 4.4  | 18        |
| 4  | Effects of Al:Si and (AlÂ+ÂNa):Si ratios on the properties of the international simple glass, part II:<br>Structure. Journal of the American Ceramic Society, 2021, 104, 183-207.                                                                                                | 3.8  | 29        |
| 5  | Al <sub>2</sub> O <sub>3</sub> Atomic Layer Deposition on Nanostructured<br>γ-Mg(BH <sub>4</sub> ) <sub>2</sub> for H <sub>2</sub> Storage. ACS Applied Energy Materials, 2021, 4,<br>1150-1162.                                                                                 | 5.1  | 13        |
| 6  | High Temperature Acclimation of Leaf Gas Exchange, Photochemistry, and Metabolomic Profiles in <i>Populus trichocarpa</i> . ACS Earth and Space Chemistry, 2021, 5, 1813-1828.                                                                                                   | 2.7  | 7         |
| 7  | Role of a Multivalent Ion–Solvent Interaction on Restricted Mg <sup>2+</sup> Diffusion in<br>Dimethoxyethane Electrolytes. Journal of Physical Chemistry B, 2021, 125, 12574-12583.                                                                                              | 2.6  | 7         |
| 8  | Pulsed Field Gradient Nuclear Magnetic Resonance and Diffusion Analysis in Battery Research.<br>Chemistry of Materials, 2021, 33, 8562-8590.                                                                                                                                     | 6.7  | 20        |
| 9  | Quantification of Highâ€Temperature Transition Al <sub>2</sub> O <sub>3</sub> and Their Phase<br>Transformations**. Angewandte Chemie - International Edition, 2020, 59, 21719-21727.                                                                                            | 13.8 | 28        |
| 10 | Quantitative Cu Counting Methodologies for Cu/SSZ-13 Selective Catalytic Reduction Catalysts by<br>Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2020, 124,<br>28061-28073.                                                                     | 3.1  | 20        |
| 11 | Probing Conformational Evolution and Associated Dynamics of<br>Mg(N(SO <sub>2</sub> CF <sub>3</sub> ) <sub>2</sub> ) <sub>2</sub> ·Dimethoxyethane Adduct Using<br>Solid-State <sup>19</sup> F and <sup>1</sup> H NMR. Journal of Physical Chemistry C, 2020, 124,<br>4999-5008. | 3.1  | 13        |
| 12 | A closed cycle for esterifying aromatic hydrocarbons with CO2 and alcohol. Nature Chemistry, 2019, 11, 940-947.                                                                                                                                                                  | 13.6 | 30        |
| 13 | IRMOF-74( <i>n</i> )–Mg: a novel catalyst series for hydrogen activation and hydrogenolysis of C–O<br>bonds. Chemical Science, 2019, 10, 9880-9892.                                                                                                                              | 7.4  | 23        |
| 14 | Revisiting effects of alkali metal and alkaline earth co-cation additives to Cu/SSZ-13 selective catalytic reduction catalysts. Journal of Catalysis, 2019, 378, 363-375.                                                                                                        | 6.2  | 59        |
| 15 | Unraveling the Dynamic Network in the Reactions of an Alkyl Aryl Ether Catalyzed by<br>Ni/Ĵ³-Al <sub>2</sub> 0 <sub>3</sub> in 2-Propanol. Journal of the American Chemical Society, 2019, 141,<br>17370-17381.                                                                  | 13.7 | 23        |
| 16 | A novel high-temperature MAS probe with optimized temperature gradient across sample rotor for<br>in-situ monitoring of high-temperature high-pressure chemical reactions. Solid State Nuclear<br>Magnetic Resonance, 2019, 102, 31-35.                                          | 2.3  | 6         |
| 17 | Interdisciplinary Round-Robin Test on Molecular Spectroscopy of the U(VI) Acetate System. ACS Omega, 2019, 4, 8167-8177.                                                                                                                                                         | 3.5  | 5         |
| 18 | Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts. Nature Communications, 2019, 10, 1137.                                                                                                                                                  | 12.8 | 99        |

NANCY M WASHTON

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mineral Surfaces as Agents of Environmental Proteolysis: Mechanisms and Controls. Environmental<br>Science & Technology, 2019, 53, 3018-3026.                                                                | 10.0 | 11        |
| 20 | Monitoring solvent dynamics and ion associations in the formation of cubic octamer polyanion in tetramethylammonium silicate solutions. Physical Chemistry Chemical Physics, 2019, 21, 4717-4720.            | 2.8  | 9         |
| 21 | CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nature<br>Microbiology, 2019, 4, 2498-2510.                                                                         | 13.3 | 85        |
| 22 | NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects. Catalysis Today, 2019, 320, 91-99.                                                    | 4.4  | 90        |
| 23 | Structural dependence of crystallization in glasses along the nepheline (NaAlSiO <sub>4</sub> ) ―<br>eucryptite (LiAlSiO <sub>4</sub> ) join. Journal of the American Ceramic Society, 2018, 101, 2840-2855. | 3.8  | 24        |
| 24 | Effect of Acid on Surface Hydroxyl Groups on Kaolinite and Montmorillonite. Zeitschrift Fur<br>Physikalische Chemie, 2018, 232, 409-430.                                                                     | 2.8  | 11        |
| 25 | Surprising formation of quasi-stable Tc( <scp>vi</scp> ) in high ionic strength alkaline media.<br>Inorganic Chemistry Frontiers, 2018, 5, 2081-2091.                                                        | 6.0  | 15        |
| 26 | Self-organizing layers from complex molecular anions. Nature Communications, 2018, 9, 1889.                                                                                                                  | 12.8 | 43        |
| 27 | Challenges and Solutions for Handling and Characterizing Alkali-Tc-Oxide Salts. MRS Advances, 2018, 3, 1191-1200.                                                                                            | 0.9  | 1         |
| 28 | Spectroscopic Characterization of Aqua [ <i>fac</i> -Tc(CO) <sub>3</sub> ] <sup>+</sup> Complexes at<br>High Ionic Strength. Inorganic Chemistry, 2018, 57, 6903-6912.                                       | 4.0  | 10        |
| 29 | Chemical Trends in Solid Alkali Pertechnetates. Inorganic Chemistry, 2017, 56, 2533-2544.                                                                                                                    | 4.0  | 26        |
| 30 | Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study. Langmuir, 2017, 33, 1359-1367.                                                  | 3.5  | 22        |
| 31 | Transformation of Active Sites in Fe/SSZ-13 SCR Catalysts during Hydrothermal Aging: A Spectroscopic,<br>Microscopic, and Kinetics Study. ACS Catalysis, 2017, 7, 2458-2470.                                 | 11.2 | 89        |
| 32 | Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in<br>Zeolites. ACS Catalysis, 2017, 7, 3489-3500.                                                             | 11.2 | 70        |
| 33 | Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al<br>melter feed. Journal of Nuclear Materials, 2017, 483, 102-106.                                            | 2.7  | 7         |
| 34 | High-resolution microstrip NMR detectors for subnanoliter samples. Physical Chemistry Chemical Physics, 2017, 19, 28163-28174.                                                                               | 2.8  | 12        |
| 35 | Toward Rational Design of Cu/SSZ-13 Selective Catalytic Reduction Catalysts: Implications from<br>Atomic-Level Understanding of Hydrothermal Stability. ACS Catalysis, 2017, 7, 8214-8227.                   | 11.2 | 278       |
| 36 | Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column<br>Experiments. Environmental Science & Technology, 2017, 51, 11011-11019.                                      | 10.0 | 15        |

NANCY M WASHTON

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts.<br>Applied Catalysis B: Environmental, 2017, 201, 461-469.                                                                  | 20.2 | 101       |
| 38 | Theoretical Modeling of <sup>99</sup> Tc NMR Chemical Shifts. Inorganic Chemistry, 2016, 55, 8341-8347.                                                                                                                       | 4.0  | 10        |
| 39 | Protein–Mineral Interactions: Molecular Dynamics Simulations Capture Importance of Variations in<br>Mineral Surface Composition and Structure. Langmuir, 2016, 32, 6194-6209.                                                 | 3.5  | 31        |
| 40 | Abiotic Protein Fragmentation by Manganese Oxide: Implications for a Mechanism to Supply Soil Biota with Oligopeptides. Environmental Science & amp; Technology, 2016, 50, 3486-3493.                                         | 10.0 | 30        |
| 41 | A comparative kinetics study between Cu/SSZ-13 and Fe/SSZ-13 SCR catalysts. Catalysis Today, 2015, 258, 347-358.                                                                                                              | 4.4  | 94        |
| 42 | Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide. Langmuir, 2015, 31, 7533-7543.                                                                                 | 3.5  | 47        |
| 43 | Highly active electrolytes for rechargeable Mg batteries based on a<br>[Mg <sub>2</sub> (μ-Cl) <sub>2</sub> ] <sup>2+</sup> cation complex in dimethoxyethane. Physical<br>Chemistry Chemical Physics, 2015, 17, 13307-13314. | 2.8  | 126       |
| 44 | Unraveling the Origin of Structural Disorder in High Temperature Transition<br>Al <sub>2</sub> O <sub>3</sub> : Structure of Î,-Al <sub>2</sub> O <sub>3</sub> . Chemistry of Materials,<br>2015, 27, 7042-7049.              | 6.7  | 51        |
| 45 | Effects of Alkali and Alkaline Earth Cocations on the Activity and Hydrothermal Stability of Cu/SSZ-13<br>NH <sub>3</sub> –SCR Catalysts. ACS Catalysis, 2015, 5, 6780-6791.                                                  | 11.2 | 235       |
| 46 | Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: Implications for the active Cu species and the roles of BrÃ,nsted acidity. Journal of Catalysis, 2015, 331, 25-38.                                                     | 6.2  | 341       |
| 47 | Nepheline crystallization in boron-rich alumino-silicate glasses as investigated by multi-nuclear NMR,<br>Raman, & Mössbauer spectroscopies. Journal of Non-Crystalline Solids, 2015, 409, 149-165.                           | 3.1  | 42        |
| 48 | Synthesis and evaluation of Cu/SAPO-34 catalysts for NH3-SCR 2: Solid-state ion exchange and one-pot<br>synthesis. Applied Catalysis B: Environmental, 2015, 162, 501-514.                                                    | 20.2 | 166       |
| 49 | Fe/SSZ-13 as an NH3-SCR catalyst: A reaction kinetics and FTIR/Mössbauer spectroscopic study. Applied<br>Catalysis B: Environmental, 2015, 164, 407-419.                                                                      | 20.2 | 108       |
| 50 | Synthesis and Evaluation of Cu-SAPO-34 Catalysts for Ammonia Selective Catalytic Reduction. 1.<br>Aqueous Solution Ion Exchange. ACS Catalysis, 2013, 3, 2083-2093.                                                           | 11.2 | 168       |
| 51 | Solid-state NMR examination of alteration layers on nuclear waste glasses. Journal of<br>Non-Crystalline Solids, 2013, 369, 44-54.                                                                                            | 3.1  | 8         |
| 52 | Structure and Chemistry in Halide Lead–Tellurite Glasses. Journal of Physical Chemistry C, 2013, 117,<br>3456-3466.                                                                                                           | 3.1  | 21        |
| 53 | Atomic-level studies of the depletion in reactive sites during clay mineral dissolution. Geochimica Et<br>Cosmochimica Acta, 2012, 92, 100-116.                                                                               | 3.9  | 7         |
| 54 | Measurement of the Reactive Surface Area of Clay Minerals Using Solid-State NMR Studies of a Probe<br>Molecule. Journal of Physical Chemistry C, 2010, 114, 5491-5498.                                                        | 3.1  | 41        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Probing the molecular-level control of aluminosilicate dissolution: A sensitive solid-state NMR proxy for reactive surface area. Geochimica Et Cosmochimica Acta, 2008, 72, 5949-5961.                                                            | 3.9  | 31        |
| 56 | NMR and IR Study of Fluorobenzene and Hexafluorobenzene Adsorbed on Alumina. Langmuir, 2007, 23, 5412-5418.                                                                                                                                       | 3.5  | 12        |
| 57 | Study of a Family of 40 Hydroxylated β-Cristobalite Surfaces Using Empirical Potential Energy<br>Functions. Journal of Physical Chemistry C, 2007, 111, 5169-5177.                                                                                | 3.1  | 30        |
| 58 | Effects of Systematic Methyl Substitution of Metal (III) Tris(n-Methyl-8-Quinolinolato) Chelates on<br>Material Properties for Optimum Electroluminescence Device Performance. Journal of the American<br>Chemical Society, 2001, 123, 6300-6307. | 13.7 | 207       |