
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/700996/publications.pdf Version: 2024-02-01

FRICA DONNER

#	Article	IF	CITATIONS
1	Unraveling microbiomes and functions associated with strategic tillage, stubble, and fertilizer management. Agriculture, Ecosystems and Environment, 2022, 323, 107686.	2.5	8
2	Pesticide effects on nitrogen cycle related microbial functions and community composition. Science of the Total Environment, 2022, 807, 150734.	3.9	25
3	Assessing the Lability and Environmental Mobility of Organically Bound Copper by Stable Isotope Dilution. Environmental Science & Technology, 2022, 56, 5580-5589.	4.6	2
4	Genomic Analysis of Carbapenem-Resistant <i>Comamonas</i> in Water Matrices: Implications for Public Health and Wastewater Treatments. Applied and Environmental Microbiology, 2022, 88, .	1.4	10
5	Neutral electrolyzed oxidizing water is effective for pre-harvest decontamination of fresh produce. Food Microbiology, 2021, 93, 103610.	2.1	7
6	Dose-related changes in respiration and enzymatic activities in soils amended with mobile platinum and gold. Applied Soil Ecology, 2021, 157, 103727.	2.1	3
7	Antibiotic Resistance and Sewage-Associated Marker Genes in Untreated Sewage and a River Characterized During Baseflow and Stormflow. Frontiers in Microbiology, 2021, 12, 632850.	1.5	12
8	Making Waves: Collaboration in the time of SARS-CoV-2 - rapid development of an international co-operation and wastewater surveillance database to support public health decision-making. Water Research, 2021, 199, 117167.	5.3	48
9	Inactivation, removal, and regrowth potential of opportunistic pathogens and antimicrobial resistance genes in recycled water systems. Water Research, 2021, 201, 117324.	5.3	17
10	Wastewater monitoring for SARS-CoV-2. Microbiology Australia, 2021, 42, 18.	0.1	5
11	Progressing Antimicrobial Resistance Sensing Technologies across Human, Animal, and Environmental Health Domains. ACS Sensors, 2021, 6, 4283-4296.	4.0	5
12	Disinfection options for irrigation water: Reducing the risk of fresh produce contamination with human pathogens. Critical Reviews in Environmental Science and Technology, 2020, 50, 2144-2174.	6.6	22
13	A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants. Environment International, 2020, 144, 106035.	4.8	55
14	Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorption?. Physiologia Plantarum, 2020, 170, 384-397.	2.6	31
15	The COVID-19 pandemic: Considerations for the waste and wastewater services sector. Case Studies in Chemical and Environmental Engineering, 2020, 1, 100006.	2.9	187
16	Chemical characterisation, antibacterial activity, and (nano)silver transformation of commercial personal care products exposed to household greywater. Environmental Science: Nano, 2019, 6, 3027-3038.	2.2	10
17	Biochar with near-neutral pH reduces ammonia volatilization and improves plant growth in a soil-plant system: A closed chamber experiment. Science of the Total Environment, 2019, 697, 134114.	3.9	40
18	Investigating the foliar uptake of zinc from conventional and nano-formulations: a methodological study. Environmental Chemistry, 2019, 16, 459.	0.7	19

#	Article	IF	CITATIONS
19	A One Health approach to managing the applications and implications of nanotechnologies in agriculture. Nature Nanotechnology, 2019, 14, 523-531.	15.6	102
20	Comparative antibacterial activities of neutral electrolyzed oxidizing water and other chlorine-based sanitizers. Scientific Reports, 2019, 9, 19955.	1.6	19
21	The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil. Science of the Total Environment, 2018, 627, 942-950.	3.9	105
22	Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: Microbial consortia could make differences. Chemical Engineering Journal, 2018, 332, 647-657.	6.6	137
23	Silver Toxicity Thresholds for Multiple Soil Microbial Biomarkers. Environmental Science & Technology, 2018, 52, 8745-8755.	4.6	19
24	Foliar application of zinc sulphate and zinc EDTA to wheat leaves: differences in mobility, distribution, and speciation. Journal of Experimental Botany, 2018, 69, 4469-4481.	2.4	95
25	Wastewater-based epidemiology biomarkers: Past, present and future. TrAC - Trends in Analytical Chemistry, 2018, 105, 453-469.	5.8	327
26	Temporal Evolution of Copper Distribution and Speciation in Roots of <i>Triticum aestivum</i> Exposed to CuO, Cu(OH) ₂ , and CuS Nanoparticles. Environmental Science & Technology, 2018, 52, 9777-9784.	4.6	44
27	Reactive gaseous mercury is generated from chloralkali factories resulting in extreme concentrations of mercury in hair of workers. Scientific Reports, 2018, 8, 3675.	1.6	11
28	Synchrotronâ€based Xâ€Ray Approaches for Examining Toxic Trace Metal(loid)s in Soil–Plant Systems. Journal of Environmental Quality, 2017, 46, 1175-1189.	1.0	46
29	Impact of Surface Charge on Cerium Oxide Nanoparticle Uptake and Translocation by Wheat (<i>Triticum aestivum</i>). Environmental Science & Technology, 2017, 51, 7361-7368.	4.6	133
30	Use of municipal solid wastes for chemical and microbiological recovery of soils contaminated with metal(loid)s. Soil Biology and Biochemistry, 2017, 111, 25-35.	4.2	47
31	Complementary Imaging of Silver Nanoparticle Interactions with Green Algae: Dark-Field Microscopy, Electron Microscopy, and Nanoscale Secondary Ion Mass Spectrometry. ACS Nano, 2017, 11, 10894-10902.	7.3	54
32	Aging of Dissolved Copper and Copperâ€based Nanoparticles in Five Different Soils: Shortâ€ŧerm Kinetics vs. Longâ€ŧerm Fate. Journal of Environmental Quality, 2017, 46, 1198-1205.	1.0	55
33	Application of Synchrotron Radiationâ€based Methods for Environmental Biogeochemistry: Introduction to the Special Section. Journal of Environmental Quality, 2017, 46, 1139-1145.	1.0	15
34	Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. Environmental Pollution, 2016, 216, 636-645.	3.7	26
35	Element distribution and iron speciation in mature wheat grains (<i>Triticum aestivum</i> L.) using synchrotron Xâ€ray fluorescence microscopy mapping and Xâ€ray absorption nearâ€edge structure (XANES) imaging. Plant, Cell and Environment, 2016, 39, 1835-1847.	2.8	72
36	Novel application of X-ray fluorescence microscopy (XFM) for the non-destructive micro-elemental analysis of natural mineral pigments on Aboriginal Australian objects. Analyst, The, 2016, 141, 3657-3667.	1.7	13

#	Article	IF	CITATIONS
37	Analytical characterisation of nanoscale zero-valent iron: A methodological review. Analytica Chimica Acta, 2016, 903, 13-35.	2.6	87
38	Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach. Environmental Science: Nano, 2015, 2, 340-351.	2.2	73
39	Agglomeration behaviour of titanium dioxide nanoparticles in river waters: A multi-method approach combining light scattering and field-flow fractionation techniques. Journal of Environmental Management, 2015, 159, 135-142.	3.8	11
40	Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing. Environmental Pollution, 2015, 205, 78-86.	3.7	41
41	Characterising the exchangeability of phenanthrene associated with naturally occurring soil colloids using an isotopic dilution technique. Environmental Pollution, 2015, 199, 244-252.	3.7	5
42	Distribution of Minerals in Wheat Grains (<i>Triticum aestivum</i> L.) and in Roller Milling Fractions Affected by Pearling. Journal of Agricultural and Food Chemistry, 2015, 63, 1276-1285.	2.4	56
43	Speciation and Lability of Ag-, AgCl-, and Ag ₂ S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films. Environmental Science & Technology, 2015, 49, 897-905.	4.6	99
44	Quantifying the adsorption of ionic silver and functionalized nanoparticles during ecotoxicity testing: Test container effects and recommendations. Nanotoxicology, 2015, 9, 1005-1012.	1.6	48
45	Microelemental characterisation of Aboriginal Australian natural Fe oxide pigments. Analytical Methods, 2015, 7, 7363-7380.	1.3	8
46	Fate of zinc and silver engineered nanoparticles in sewerage networks. Water Research, 2015, 77, 72-84.	5.3	96
47	Changes in soil bacterial communities and diversity in response to long-term silver exposure. FEMS Microbiology Ecology, 2015, 91, fiv114.	1.3	67
48	<i>In Situ</i> Fixation of Metal(loid)s in Contaminated Soils: A Comparison of Conventional, Opportunistic, and Engineered Soil Amendments. Environmental Science & Technology, 2015, 49, 13501-13509.	4.6	35
49	Aggregation behaviour of engineered nanoparticles in natural waters: Characterising aggregate structure using on-line laser light scattering. Journal of Hazardous Materials, 2015, 284, 190-200.	6.5	59
50	In Situ Chemical Transformations of Silver Nanoparticles along the Water–Sediment Continuum. Environmental Science & Technology, 2015, 49, 318-325.	4.6	37
51	Speciation mapping of environmental samples using XANES imaging. Environmental Chemistry, 2014, 11, 341.	0.7	55
52	Hard X-ray synchrotron biogeochemistry: piecing together the increasingly detailed puzzle. Environmental Chemistry, 2014, 11, 1.	0.7	4
53	Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: A critical review. Analytica Chimica Acta, 2014, 822, 1-22.	2.6	150
54	Can earthworm-secreted calcium carbonate immobilise Zn in contaminated soils?. Soil Biology and Biochemistry, 2014, 74, 1-10.	4.2	21

#	Article	IF	CITATIONS
55	Fate and lability of silver in soils: Effect of ageing. Environmental Pollution, 2014, 191, 151-157.	3.7	56
56	Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere, 2014, 111, 352-358.	4.2	100
57	Surface Immobilization of Engineered Nanomaterials for in Situ Study of their Environmental Transformations and Fate. Environmental Science & amp; Technology, 2013, 47, 9308-9316.	4.6	28
58	Application of MicroRespâ,,¢ for soil ecotoxicology. Environmental Pollution, 2013, 179, 177-184.	3.7	22
59	Effects of Chemical Amendments on the Lability and Speciation of Metals in Anaerobically Digested Biosolids. Environmental Science & Technology, 2013, 47, 11157-11165.	4.6	20
60	Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environmental Pollution, 2013, 176, 193-197.	3.7	184
61	Distribution and speciation of Mn in hydrated roots of cowpea at levels inhibiting root growth. Physiologia Plantarum, 2013, 147, 453-464.	2.6	21
62	Ecotoxicity of carbamazepine and its UV photolysis transformation products. Science of the Total Environment, 2013, 443, 870-876.	3.9	159
63	Measurement of Inorganic Arsenic Species in Rice after Nitric Acid Extraction by HPLC-ICPMS: Verification Using XANES. Environmental Science & Technology, 2013, 47, 5821-5827.	4.6	68
64	Assessing the contributions of lateral roots to element uptake in rice using an auxin-related lateral root mutant. Plant and Soil, 2013, 372, 125-136.	1.8	26
65	Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Research, 2013, 47, 4585-4599.	5.3	47
66	Quantitative determination of metal and metalloid spatial distribution in hydrated and fresh roots of cowpea using synchrotron-based X-ray fluorescence microscopy. Science of the Total Environment, 2013, 463-464, 131-139.	3.9	38
67	A radio-isotopic dilution technique for functional characterisation of the associations between inorganic contaminants and water-dispersible naturally occurring soil colloids. Environmental Chemistry, 2013, 10, 341.	0.7	9
68	Mapping Element Distributions in Plant Tissues Using Synchrotron X-ray Fluorescence Techniques. Methods in Molecular Biology, 2013, 953, 143-159.	0.4	10
69	Examination of the Distribution of Arsenic in Hydrated and Fresh Cowpea Roots Using Two- and Three-Dimensional Techniques Â. Plant Physiology, 2012, 159, 1149-1158.	2.3	43
70	A review of recent developments in the speciation and location of arsenic and selenium in rice grain. Analytical and Bioanalytical Chemistry, 2012, 402, 3275-3286.	1.9	79
71	Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge. Environmental Science & Technology, 2012, 46, 9089-9096.	4.6	193
72	Characterization of Leached Phosphorus from Soil, Manure, and Manure-Amended Soil by Physical and Chemical Fractionation and Diffusive Gradients in Thin Films (DGT). Environmental Science & Technology, 2012, 46, 10564-10571.	4.6	29

#	Article	IF	CITATIONS
73	Ageing of zinc in highly-weathered iron-rich soils. Plant and Soil, 2012, 361, 83-95.	1.8	16
74	A source classification framework supporting pollutant source mapping, pollutant release prediction, transport and load forecasting, and source control planning for urban environments. Environmental Science and Pollution Research, 2012, 19, 1119-1130.	2.7	12
75	Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology. Analytical and Bioanalytical Chemistry, 2012, 402, 3287-3298.	1.9	60
76	A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids. Environmental Pollution, 2012, 166, 57-64.	3.7	52
77	X-ray Absorption and Micro X-ray Fluorescence Spectroscopy Investigation of Copper and Zinc Speciation in Biosolids. Environmental Science & Technology, 2011, 45, 7249-7257.	4.6	75
78	The implications of household greywater treatment and reuse for municipal wastewater flows and micropollutant loads. Water Research, 2011, 45, 1549-1560.	5.3	74
79	Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors. Analytical and Bioanalytical Chemistry, 2011, 400, 1637-1644.	1.9	93
80	In Situ Distribution and Speciation of Toxic Copper, Nickel, and Zinc in Hydrated Roots of Cowpea Â. Plant Physiology, 2011, 156, 663-673.	2.3	130
81	Fast X-Ray Fluorescence Microtomography of Hydrated Biological Samples. PLoS ONE, 2011, 6, e20626.	1.1	89
82	Presence of selected priority and personal care substances in an onsite bathroom greywater treatment facility. Water Science and Technology, 2010, 62, 2889-2898.	1.2	14
83	Presence and fate of priority substances in domestic greywater treatment and reuse systems. Science of the Total Environment, 2010, 408, 2444-2451.	3.9	70
84	Biological and chemical assessments of zinc ageing in field soils. Environmental Pollution, 2010, 158, 339-345.	3.7	28
85	Metals in greywater: Sources, presence and removal efficiencies. Desalination, 2009, 248, 271-278.	4.0	51
86	Quantifying Releases of Priority Pollutants from Urban Sources. Proceedings of the Water Environment Federation, 2009, 2009, 5873-5891.	0.0	6