Oscar Martinez Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7009806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Research International, 2015, 73, 204-212.	2.9	197
2	Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry, 2009, 44, 668-677.	1.8	145
3	Quality of thawed deepwater pink shrimp (Parapenaeus longirostris) treated with melanosis-inhibiting formulations during chilled storage. International Journal of Food Science and Technology, 2007, 42, 1029-1038.	1.3	105
4	Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. Journal of the Science of Food and Agriculture, 2010, 90, n/a-n/a.	1.7	99
5	Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chemistry, 2014, 148, 445-452.	4.2	95
6	Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability. Food Chemistry, 2017, 215, 383-390.	4.2	81
7	Characterisation and tissue distribution of polyphenol oxidase of deepwater pink shrimp (Parapenaeus) Tj ETQq1	1 0,78431 4.2	4 rgBT /Ove
8	Recovery, viscoelastic and functional properties of Barbel skin gelatine: Investigation of anti-DPP-IV and anti-prolyl endopeptidase activities of generated gelatine polypeptides. Food Chemistry, 2015, 168, 478-486.	4.2	60
9	Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion. Food Chemistry, 2016, 192, 34-42.	4.2	60
10	Effectiveness of Onboard Application of 4â€Hexylresorcinol in Inhibiting Melanosis in Shrimp (<i>Parapenaeus longirostris</i>). Journal of Food Science, 2004, 69, C643.	1.5	58
11	Characteristics and functional properties of gelatin extracted from squid (Loligo vulgaris) skin. LWT - Food Science and Technology, 2016, 65, 924-931.	2.5	53
12	Functional, antioxidant and film-forming properties of tuna-skin gelatin with a brown algae extract. International Journal of Biological Macromolecules, 2012, 51, 477-483.	3.6	50
13	The effect of brine composition and pH on the yield and nature of water-soluble proteins extractable from brined muscle of cod (). Food Chemistry, 2005, 92, 71-77.	4.2	43
14	Enhancement of ACE and prolyl oligopeptidase inhibitory potency of protein hydrolysates from sardine and tuna by-products by simulated gastrointestinal digestion. Food and Function, 2016, 7, 2066-2073.	2.1	43
15	Functional and Thermal Gelation Properties of Squid Mantle Proteins Affected by Chilled and Frozen Storage. Journal of Food Science, 2003, 68, 1962-1967.	1.5	42
16	Effect of brine salting at different pHs on the functional properties of cod muscle proteins after subsequent dry salting. Food Chemistry, 2006, 94, 123-129.	4.2	41
17	The effect of several cooking treatments on subsequent chilled storage of thawed deepwater pink shrimp (Parapenaeus longirostris) treated with different melanosis-inhibiting formulas. LWT - Food Science and Technology, 2009, 42, 1335-1344.	2.5	41
18	Sodium replacement in the cod () muscle salting process. Food Chemistry, 2005, 93, 125-133.	4.2	39

#	Article	IF	CITATIONS
19	Three-phase partitioning and proteins hydrolysis patterns of alkaline proteases derived from fish viscera. Separation and Purification Technology, 2014, 132, 174-181.	3.9	38
20	Gelatin prepared from European eel (Anguilla anguilla) skin: Physicochemical, textural, viscoelastic and surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 643-650.	2.3	36
21	Melanosis inhibition and SO2residual levels in shrimps (Parapenaeus longirostris) after different sulfite-based treatments. Journal of the Science of Food and Agriculture, 2005, 85, 1143-1148.	1.7	35
22	Spraying of 4-hexylresorcinol based formulations to prevent enzymatic browning in Norway lobsters (Nephrops norvegicus) during chilled storage. Food Chemistry, 2007, 100, 147-155.	4.2	35
23	Enhanced recovery of alkaline protease from fish viscera by phase partitioning and its application. Chemistry Central Journal, 2013, 7, 79.	2.6	34
24	Melanosis inhibition and 4-hexylresorcinol residual levels in deepwater pink shrimp (Parapenaeus) Tj ETQq0 0 0 rg	BT./Overlo	ocg_10 Tf 50
25	Sulfated polysaccharides from Loligo vulgaris skin: Potential biological activities and partial purification. International Journal of Biological Macromolecules, 2015, 72, 1143-1151.	3.6	32
26	Exploring the potential of common iceplant, seaside arrowgrass and sea fennel as edible halophytic plants. Food Research International, 2020, 137, 109613.	2.9	32
27	A 4-Hexylresorcinol-based Formulation to Prevent Melanosis and Microbial Growth in Chilled Tiger Prawns (Marsupenaeus japonicus) from Aquaculture. Journal of Food Science, 2005, 70, M415-M422.	1.5	31
28	Presence of hemocyanin with diphenoloxidase activity in deepwater pink shrimp (Parapenaeus) Tj ETQq0 0 0 rgB1	[/Overloci 4.2	2 10 Tf 50 38
29	Evidence of an active laccase-like enzyme in deepwater pink shrimp (Parapenaeus longirostris). Food Chemistry, 2008, 108, 624-632.	4.2	30
30	Marine Collagen as a Source of Bioactive Molecules: A Review. Natural Products Journal, 2013, 3, 105-114.	0.1	30
31	Characterization of phenoloxidase activity of carapace and viscera from cephalothorax of Norway lobster (Nephrops norvegicus). LWT - Food Science and Technology, 2010, 43, 1240-1245.	2.5	29
32	Purification, identification and structural modelling of DPP-IV inhibiting peptides from barbel protein hydrolysate. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1008, 260-269.	1.2	29
33	Antioxidant and Antimicrobial Enhancement by Reaction of Protein Hydrolysates Derived from Shrimp By-Products with Glucosamine. Waste and Biomass Valorization, 2020, 11, 2491-2505.	1.8	29
34	Obtaining of functional components from cooked shrimp (Penaeus vannamei) by enzymatic hydrolysis. Food Bioscience, 2016, 15, 55-63.	2.0	28
35	Controlled atmosphere as coadjuvant to chilled storage for prevention of melanosis in shrimps (Parapenaeus longirostris). European Food Research and Technology, 2005, 220, 125-130.	1.6	26
36	Influence of mono- and divalent salts on water loss and properties of dry salted cod fillets. LWT - Food Science and Technology, 2013, 53, 387-394.	2.5	26

#	Article	IF	CITATIONS
37	Changes in structural integrity of sodium caseinate films by the addition of nanoliposomes encapsulating an active shrimp peptide fraction. Journal of Food Engineering, 2019, 244, 47-54.	2.7	24
38	Chemical and microbial quality indexes of Norwegian lobsters (<i>Nephrops norvegicus</i>) dusted with sulphites. International Journal of Food Science and Technology, 2008, 43, 1099-1110.	1.3	20
39	Role of Sulfites and 4-Hexylresorcinol in Microbial Growth and Melanosis Prevention of Deepwater Pink Shrimp (Parapenaeus longirostris) Using a Controlled Atmosphere. Journal of Food Protection, 2005, 68, 98-104.	0.8	16
40	Quality of Norway lobster (Nephrops norwegicus) treated with a 4-hexylresorcinol-based formulation. European Food Research and Technology, 2006, 222, 425-431.	1.6	16
41	Antioxidant and Anti-proliferative Activities of Astaxanthin Extracted from the Shell Waste of Deep-water Pink Shrimp (Parapenaeus longirostris). Natural Products Journal, 2013, 3, 82-89.	0.1	16
42	Physical, chemical, and microbiological properties of fish tofu containing shrimp hydrolysate. Fisheries Science, 2016, 82, 379-389.	0.7	16
43	Upgrading collagenous smooth hound by-products: Effect of hydrolysis conditions, in vitro gastrointestinal digestion and encapsulation on bioactive properties. Food Bioscience, 2019, 28, 99-108.	2.0	16
44	Glycosaminoglycans from grey triggerfish and smooth hound skins: Rheological, Anti-inflammatory and wound healing properties. International Journal of Biological Macromolecules, 2018, 118, 965-975.	3.6	15
45	Characterization, Surface Properties and Biological Activities of Protein Hydrolysates Obtained from Hake (Merluccius merluccius) Heads. Waste and Biomass Valorization, 2019, 10, 287-297.	1.8	15
46	Effect of natural compounds alternative to commercial antimelanosics on polyphenol oxidase activity and microbial growth in cultured prawns (Marsupenaeus tiger) during chilled storage. European Food Research and Technology, 2006, 223, 7-15.	1.6	14
47	Physicochemical and Biological Properties of Eel By-Products Protein Hydrolysates: Potential Application to Meat Product Preservation. Waste and Biomass Valorization, 2020, 11, 931-942.	1.8	14
48	Occurrence of a CGRP-Like Molecule in Siki (Centroscymnus coelolepsis) Hydrolysate of Industrial Origin. Journal of Agricultural and Food Chemistry, 2007, 55, 5469-5475.	2.4	13
49	The effect of different melanosis-inhibiting blends on the quality of frozen deep-water rose shrimp (Parapenaeus longirostris). Food Control, 2020, 109, 106889.	2.8	13
50	The preferential use of a soy-rapeseed lecithin blend for the liposomal encapsulation of a tilapia viscera hydrolysate. LWT - Food Science and Technology, 2021, 139, 110530.	2.5	12
51	Effect of different chemical compounds as coadjutants of 4â€hexylresorcinol on the appearance of deepwater pink shrimp (<i>Parapenaeus longirostris</i>) during chilled storage. International Journal of Food Science and Technology, 2008, 43, 2010-2018.	1.3	11
52	Halophytes as a potential source of melanosis-inhibiting compounds. Mechanism of inhibition of a characterized polyphenol extract of purslane (Portulaca oleracea). Food Chemistry, 2021, 355, 129649.	4.2	11
53	Use of a Commercial Protease and Yeasts To Obtain CGRP-like Molecules from Saithe Protein. Journal of Agricultural and Food Chemistry, 2008, 56, 7853-7859.	2.4	10
54	Use of Sea Fennel as a Natural Ingredient of Edible Films for Extending the Shelf Life of Fresh Fish Burgers. Molecules, 2020, 25, 5260.	1.7	10

#	Article	IF	CITATIONS
55	Antioxidant, Antihypertensive, Hypoglycaemic and Nootropic Activity of a Polyphenolic Extract from the Halophyte Ice Plant (Mesembryanthemum crystallinum). Foods, 2022, 11, 1581.	1.9	9
56	SENSORY ANALYSES OF NORWAY LOBSTER TREATED WITH DIFFERENT ANTIMELANOSIS AGENTS. Journal of Sensory Studies, 2007, 22, 609-622.	0.8	8
57	Angiotensin-I-Converting Enzyme Inhibitory and Antioxidant Activities of Protein Hydrolysate from Muscle of Barbel (<i>Barbus callensis</i>). Journal of Chemistry, 2013, 2013, 1-6.	0.9	8
58	Effect of seafood peptones on biomass and metabolic activity by Enterococcus faecalis DM19. LWT - Food Science and Technology, 2017, 81, 94-100.	2.5	8
59	Thermoseparating Aqueous Two-Phase System for the Separation of Alkaline Proteases from Fish Viscera. Separation Science and Technology, 2014, 49, 2158-2168.	1.3	7
60	Use of hydrogen peroxide and carbonate/bicarbonate buffer for soaking of bacalao (salted cod). European Food Research and Technology, 2005, 221, 226-231.	1.6	6
61	Effect of daily gavage with a collagen hydrolysate containing calcitonin gene-related peptide (CGRP)-like molecules on plasma CGRP-levels in rats. Journal of Functional Foods, 2012, 4, 767-775.	1.6	6
62	Structural characteristics and biological activities of sulfated glycosaminoglycans extracted from shrimp byâ€products. Journal of Food Biochemistry, 2018, 42, e12647.	1.2	6
63	Hydrolysis of Shrimp Cooking Juice Waste for the Production of Antioxidant Peptides and Proteases by Enterococcus faecalis DM19. Waste and Biomass Valorization, 2021, 12, 3741-3752.	1.8	6
64	Effect of soaking with hydrogen peroxide and carbonate/bicarbonate buffer solutions on chemical composition and protein extractability of desalted cod. European Food Research and Technology, 2008, 226, 661-669.	1.6	4
65	Extraction and Biochemical Characterization of Peptidases from Giant Catfish Viscera by Aqueous Two-Phase System. Journal of Food Biochemistry, 2015, 39, 429-438.	1.2	4
66	Protein Hydrolysis and Glycosylation as Strategies to Produce Bioactive Ingredients from Unmarketable Prawns. Foods, 2021, 10, 2844.	1.9	1
67	Editorial (Hot Topic: Development of Bioprocesses for Potential Functional Ingredients from Marine) Tj ETQq1 1	0.784314 0.1	rgBT /Overloo