Alla Arakcheeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/700972/publications.pdf Version: 2024-02-01

Διιλ Δρακαμεενά

#	Article	IF	CITATIONS
1	Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3. Nature Communications, 2016, 7, 13406.	12.8	106
2	Ultrasensitive 3D Aerosol-Jet-Printed Perovskite X-ray Photodetector. ACS Nano, 2021, 15, 4077-4084.	14.6	71
3	The modulated structure of Ba0.39Sr0.61Nb2O6. I. Harmonic solution. Acta Crystallographica Section B: Structural Science, 2003, 59, 28-35.	1.8	70
4	The luminescence of NaxEu3+(2â^'x)/3MoO4scheelites depends on the number of Eu-clusters occurring in their incommensurately modulated structure. Chemical Science, 2012, 3, 384-390.	7.4	63
5	The self-hosting structure of β-Ta. Acta Crystallographica Section B: Structural Science, 2002, 58, 1-7.	1.8	57
6	Na _{2/7} Gd _{4/7} MoO ₄ : a Modulated Scheelite-Type Structure and Conductivity Properties. Inorganic Chemistry, 2012, 51, 5313-5324.	4.0	54
7	Application of micro X-ray diffraction to investigate the reaction products formed by the alkali–silica reaction in concrete structures. Cement and Concrete Research, 2016, 79, 49-56.	11.0	52
8	KNd(MoO4)2:Â A New Incommensurate Modulated Structure in the Scheelite Family. Chemistry of Materials, 2006, 18, 4075-4082.	6.7	47
9	The Room-Temperature Superstructure of ZrP2O7 Is Orthorhombic:  There Are No Unusual 180° Pâ^'Oâ^'P Bond Angles. Inorganic Chemistry, 2006, 45, 4346-4351.	4.0	41
10	CH ₃ NH ₃ PbI ₃ : precise structural consequences of water absorption at ambient conditions. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 716-722.	1.1	37
11	Preferential out-of-plane conduction and quasi-one-dimensional electronic states in layered 1T-TaS2. Npj 2D Materials and Applications, 2020, 4, .	7.9	34
12	Capabilities and limitations of a (3â€+â€ <i>d</i>)-dimensional incommensurately modulated structure as a model for the derivation of an extended family of compounds: example of the scheelite-like structures. Acta Crystallographica Section B: Structural Science, 2008, 64, 12-25.	1.8	29
13	KSm(MoO ₄) ₂ , an incommensurately modulated and partially disordered scheelite-like structure. Acta Crystallographica Section B: Structural Science, 2008, 64, 160-171.	1.8	29
14	Crystal Structure and Optical and Magnetic Properties of Pr ₂ (MoO ₄) ₃ . Inorganic Chemistry, 2010, 49, 1587-1594.	4.0	29
15	KEu(MoO ₄) ₂ : Polymorphism, Structures, and Luminescent Properties. Chemistry of Materials, 2015, 27, 5519-5530.	6.7	29
16	The role of silver on the stabilization of the incommensurately modulated structure in calaverite, AuTe2. American Mineralogist, 2009, 94, 728-736.	1.9	25
17	Incommensurate crystal structure of PbHfO ₃ . Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 7-12.	1.1	25
18	The incommensurately modulated structures of natural natrite at 120 and 293 K from synchrotron X-ray data. American Mineralogist, 2010, 95, 574-581.	1.9	23

ALLA ARAKCHEEVA

#	Article	IF	CITATIONS
19	A reinterpretation of the phase transitions in Na2CO3. Acta Crystallographica Section B: Structural Science, 2005, 61, 601-607.	1.8	22
20	The commensurate composite σ-structure of β-tantalum. Acta Crystallographica Section B: Structural Science, 2003, 59, 324-336.	1.8	19
21	Controlling structural and magnetic properties of IONPs by aqueous synthesis for improved hyperthermia. RSC Advances, 2017, 7, 13159-13170.	3.6	19
22	Hexagonal ferrites: a unified model of the (TS) _{<i>n</i>} T series in superspace. Acta Crystallographica Section B: Structural Science, 2007, 63, 703-712.	1.8	18
23	Synthesis, growth and characterization of 4-bromo-4â€2-nitrobenzylidene aniline (BNBA): a novel nonlinear optical material with a (3+1)-dimensional incommensurately modulated structure. CrystEngComm, 2013, 15, 2474.	2.6	17
24	New insight into the pectolite – serandite series: a single crystal diffraction study of Na(Ca1.73Mn0.27)[HSi3O9] at 293 and 100 K. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, 696-704.	0.8	14
25	Cimetidine, C ₁₀ H ₁₆ N ₆ S, form C: crystal structure and modelling of polytypes using the superspace approach. Journal of Applied Crystallography, 2013, 46, 99-107.	4.5	14
26	(BEDT-TTF)2Cu2(CN)3 Spin Liquid: Beyond the Average Structure. Crystals, 2018, 8, 158.	2.2	14
27	Crystal structure of loparite. Crystallography Reports, 2000, 45, 210-214.	0.6	12
28	The crystal structure of lewisite, (Ca,Sb3+,Fe3+,Al,Na,Mn,â–¡)2(Sb5+,Ti)2O6(OH). Journal of Alloys and Compounds, 2000, 296, 75-79.	5.5	11
29	Getting more out of an incommensurately modulated structure: the example of K5Yb(MoO4)4. Acta Crystallographica Section B: Structural Science, 2006, 62, 52-59.	1.8	11
30	Cyan titania nanowires: Spectroscopic study of the origin of the self-doping enhanced photocatalytic activity. Catalysis Today, 2017, 284, 52-58.	4.4	10
31	New boron-oxygen layer in the structure of barium hydrodecaborate Ba5[B20O33(OH)4] â‹ H2O. Crystallography Reports, 2000, 45, 405-409.	0.6	9
32	Structure studies of solid solutions of oxygen in electrolytic niobium. Crystallography Reports, 2002, 47, 237-244.	0.6	9
33	LiZnNb4O11.5: A novel oxygen deficient compound in the Nb-rich part of the Li2O–ZnO–Nb2O5 system. Journal of Solid State Chemistry, 2010, 183, 408-418.	2.9	9
34	A novel perovskite-like Ta-bronze KTa1+z O3: preparation, stoichiometry, conductivity and crystal structure studies. Acta Crystallographica Section B: Structural Science, 2001, 57, 157-162.	1.8	8
35	The incommensurate structure of K3In(PO4)2. Acta Crystallographica Section B: Structural Science, 2003, 59, 17-27.	1.8	8
36	Structure type of hexagonal tantalum bronzes with variable composition K6Ta6 + Z O15F6(F, O)y: Ta(5 â^') Tj E	FQq0001	rgBT /Overloc

3

Alla Arakcheeva

#	Article	lF	CITATIONS
37	The role of second coordination-sphere interactions in incommensurately modulated structures, using β-K5Yb(MoO4)4 as an example. Acta Crystallographica Section B: Structural Science, 2005, 61, 400-406.	1.8	8
38	Validating the model of a (3 + 1)-dimensional incommensurately modulated structure as generator of a family of compounds for the Eu ₂ (MoO ₄) ₃ scheelite structure. Philosophical Magazine Letters, 2009, 89, 257-266.	1.2	8
39	Crystal Structure, Transport, and Magnetic Properties of an Ir6+ Compound Ba8Al2IrO14. Inorganic Chemistry, 2015, 54, 4371-4376.	4.0	8
40	Defect structure of TiS3 single crystals of the A-ZrSe3 type. Crystallography Reports, 2016, 61, 923-930.	0.6	8
41	Perovskite-like modification of Cs3Sb2I9 as a member of theOD family A3B2X9. Journal of Structural Chemistry, 1999, 40, 572-579.	1.0	7
42	Magnetic properties and crystal structure of \hat{I}^2 -Ta. Crystallography Reports, 2004, 49, 930-935.	0.6	7
43	Effect of Thermal Cycling on the Structural Evolution of Methylammonium Lead Iodide Monitored around the Phase Transition Temperatures. Solar Rrl, 2019, 3, 1900044.	5.8	7
44	Incommensurate atomic density waves in the high-pressure IVb phase of barium. IUCrJ, 2017, 4, 152-157.	2.2	7
45	Crystal structure of new decaborate Na2Ba2[B10O17(OH)2]. Crystallography Reports, 2002, 47, 24-28.	0.6	6
46	X-ray mapping in heterocyclic design: IX. X-ray structure investigation of conjugated aminodienes. Crystallography Reports, 2002, 47, 973-978.	0.6	6
47	High-Pressure Synthesis of Rare-Earth Borate-Nitrate Crystals for Second Harmonic Generation. Inorganic Chemistry, 2021, 60, 286-291.	4.0	6
48	Crystal structure and resistivity characteristics of new tantalum bronze K6Ta6.5O15 + x F6 + y. Crystallography Reports, 2001, 46, 182-189.	0.6	5
49	Sr ₂ Pt _{8â^'<i>x</i>} As: a layered incommensurately modulated metal with saturated resistivity. IUCrJ, 2018, 5, 470-477.	2.2	5
50	Ordering of Ca and Sr atoms in (Ca0.5Sr0.5)(Cu0.75Bi0.25)O2 single crystals of CaCuO2-type structure. Journal of Physics and Chemistry of Solids, 1995, 56, 925-933.	4.0	4
51	Cation ordering in Y,Tb-(123)-type structures. Superconductor Science and Technology, 1995, 8, 540-545.	3.5	4
52	Analysis of the structure of an amorphous sediment obtained upon decomposition of potassium oxofluroniobate in water. Crystallography Reports, 2002, 47, 555-558.	0.6	4
53	The study of incommensurate structures as a probe to reveal atomic interactions in crystals. Zeitschrift Fur Kristallographie - Crystalline Materials, 2004, 219, .	0.8	4
54	Single crystals of superconductingSmFeAsOHx: Structure and properties. Physical Review B, 2016, 94, .	3.2	4

#	Article	IF	CITATIONS
55	Pressure-induced transformation of CH ₃ NH ₃ PbI ₃ : the role of the noble-gas pressure transmitting media. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 361-370.	1.1	4
56	Title is missing!. Doklady Chemistry, 2002, 382, 5-8.	0.9	3
57	Atomic clusters and phase transitions in the metastable β-Ta phase between 4.2 and 293 K. Europhysics Letters, 2005, 69, 378-384.	2.0	3
58	Influence of the organic cation disorder on photoconductivity in ethylenediammonium lead iodide, NH ₃ CH ₂ CH ₂ NH ₃ PbI ₄ . CrystEngComm, 2018, 20, 3543-3549.	2.6	3
59	The influence of the incommensurately modulated structure on the physical properties of Fe1.35Ge. Journal of Alloys and Compounds, 2019, 794, 108-113.	5.5	3
60	Fast Lead-Free Humidity Sensor Based on Hybrid Halide Perovskite. Crystals, 2022, 12, 547.	2.2	3
61	Electrocrystallization of β-tantalum in salt melts. Doklady Chemistry, 2008, 423, 269-272.	0.9	2
62	The aperiodic nature of incommensurately modulated structures. Rendiconti Lincei, 2013, 24, 77-84.	2.2	2
63	High-pressure transformation of MAPbI ₃ : role of the noble-gas medium. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1416-C1416.	0.1	2
64	Fragmentary analysis of crystal structures of the Al, Ca-ferrite phase (Fe, Ca)4(Fe, Al)2CaFe(Al, Fe)2O14. Journal of Structural Chemistry, 1994, 35, 647-657.	1.0	1
65	Specific features of the crystal structure and magnetic properties of KTaO3 produced by electrolysis of melts. Crystallography Reports, 2005, 50, 779-784.	0.6	1
66	Electrochemical synthesis of tantalum monoxide nanoneedles in molten salts. Doklady Chemistry, 2009, 428, 218-221.	0.9	1
67	Influence of the cation sublattice on the growth, structure and properties of single crystals of 123- and 2212-type high-Tc superconductors. Journal of Crystal Growth, 1996, 167, 102-106.	1.5	0
68	Possibility of an unconventional spin state ofIr4+inBa21Ir9O43single crystal. Physical Review B, 2016, 94, .	3.2	0
69	One-dimensional composite host–guest structure in BaVS ₃ . Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 115-122.	1.1	0
70	Superspace approach applied to the Y series of hexagonal ferrites. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, s36-s36.	0.3	0
71	Crystallographic aspect of the phase transitions in Na2CO3. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, s182-s182.	0.3	0
72	Simulation of a polytypic family from an incommensurately modulated member. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c49-c49.	0.3	0

Alla Arakcheeva

#	Article	IF	CITATIONS
73	Superspace embedding of sheelite-like structures. Acta Crystallographica Section A: Foundations and Advances, 2006, 62, s46-s46.	0.3	0
74	Can superspace reinvent crystal chemistry?. Acta Crystallographica Section A: Foundations and Advances, 2007, 63, s93-s93.	0.3	0
75	The (3+1)-dimensional scheelite structure type. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C618-C618.	0.3	0
76	A few applications of the superspace approach in mineralogy. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s48-s48.	0.3	0
77	Organic-inorganic hybrid perovskite CH3NH3PbI3: structural consequences of water absorption. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s294-s295.	0.1	0
78	Electronic properties of incommensurately modulated novel and complex materials. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e96-e96.	0.1	0
79	Self-flux-grown Ba ₄ Fe ₄ ClO _{9.5â^'<i>x</i>} crystals exhibiting structures with tunable modulation. CrystEngComm 0	2.6	О