Edouard Bertrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7009619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Localization of ASH1 mRNA Particles in Living Yeast. Molecular Cell, 1998, 2, 437-445.	9.7	1,475
2	Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells. Science, 2005, 309, 1573-1576.	12.6	1,247
3	The RasGAP-associated endoribonuclease G3BP assembles stress granules. Journal of Cell Biology, 2003, 160, 823-831.	5.2	790
4	From Silencing to Gene Expression. Cell, 2004, 116, 683-698.	28.9	658
5	P-Body Purification Reveals the Condensation of Repressed mRNA Regulons. Molecular Cell, 2017, 68, 144-157.e5.	9.7	581
6	Single mRNA Molecules Demonstrate Probabilistic Movement in Living Mammalian Cells. Current Biology, 2003, 13, 161-167.	3.9	529
7	Cajal body-specific small nuclear RNAs: a novel class of 2'-O-methylation and pseudouridylation guide RNAs. EMBO Journal, 2002, 21, 2746-2756.	7.8	417
8	FISH-quant: automatic counting of transcripts in 3D FISH images. Nature Methods, 2013, 10, 277-278.	19.0	338
9	smiFISH and FISH-quant – a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Research, 2016, 44, e165-e165.	14.5	312
10	Suv39H1 and HP1Î ³ are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO Journal, 2007, 26, 424-435.	7.8	281
11	DNA Damage Regulates Alternative Splicing through Inhibition of RNA Polymerase II Elongation. Cell, 2009, 137, 708-720.	28.9	267
12	Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body–specific localization signal. Journal of Cell Biology, 2004, 164, 647-652.	5.2	248
13	HSP90 and Its R2TP/Prefoldin-like Cochaperone Are Involved in the Cytoplasmic Assembly of RNA Polymerase II. Molecular Cell, 2010, 39, 912-924.	9.7	246
14	A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nature Communications, 2016, 7, 12248.	12.8	233
15	ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. Journal of Cell Biology, 2005, 169, 745-753.	5.2	223
16	Hypermethylation of the Cap Structure of Both Yeast snRNAs and snoRNAs Requires a Conserved Methyltransferase that Is Localized to the Nucleolus. Molecular Cell, 2002, 9, 891-901.	9.7	222
17	Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO Journal, 2003, 22, 1878-1888.	7.8	213
18	The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nature Structural and Molecular Biology, 2013, 20, 1367-1376.	8.2	199

#	Article	IF	CITATIONS
19	Translationally Repressed mRNA Transiently Cycles through Stress Granules during Stress. Molecular Biology of the Cell, 2008, 19, 4469-4479.	2.1	197
20	The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. Journal of Cell Biology, 2008, 180, 579-595.	5.2	196
21	A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs. EMBO Journal, 2003, 22, 4283-4293.	7.8	181
22	Human Box H/ACA Pseudouridylation Guide RNA Machinery. Molecular and Cellular Biology, 2004, 24, 5797-5807.	2.3	180
23	The transcriptional cycle of HIV-1 in real-time and live cells. Journal of Cell Biology, 2007, 179, 291-304.	5.2	174
24	Cell Cycle-dependent Recruitment of Telomerase RNA and Cajal Bodies to Human Telomeres. Molecular Biology of the Cell, 2006, 17, 944-954.	2.1	168
25	Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments. EMBO Journal, 2002, 21, 2736-2745.	7.8	167
26	Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells. Journal of Cell Biology, 2016, 214, 769-781.	5.2	158
27	PHAX and CRM1 Are Required Sequentially to Transport U3 snoRNA to Nucleoli. Molecular Cell, 2004, 16, 777-787.	9.7	157
28	Dendrites of Mammalian Neurons Contain Specialized P-Body-Like Structures That Respond to Neuronal Activation. Journal of Neuroscience, 2008, 28, 13793-13804.	3.6	153
29	Crosstalk between mRNA 3′ End Processing andÂTranscription Initiation. Molecular Cell, 2010, 40, 410-422.	9.7	153
30	A Growing Toolbox to Image Gene Expression in Single Cells: Sensitive Approaches for Demanding Challenges. Molecular Cell, 2018, 71, 468-480.	9.7	149
31	Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. Journal of Cell Biology, 2007, 178, 1145-1160.	5.2	147
32	Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biology, 2017, 14, 680-692.	3.1	144
33	CBC–ARS2 stimulates 3′-end maturation of multiple RNA families and favors cap-proximal processing. Nature Structural and Molecular Biology, 2013, 20, 1358-1366.	8.2	143
34	Can hammerhead ribozymes be efficient tools to inactivate gene function?. Nucleic Acids Research, 1994, 22, 293-300.	14.5	141
35	Exportin-5 Mediates Nuclear Export of Minihelix-containing RNAs. Journal of Biological Chemistry, 2003, 278, 5505-5508.	3.4	139
36	Retroviral Genomic RNAs Are Transported to the Plasma Membrane by Endosomal Vesicles. Developmental Cell, 2003, 5, 161-174.	7.0	138

#	Article	IF	CITATIONS
37	Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Research, 2003, 31, 6593-6597.	14.5	131
38	Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nature Methods, 2005, 2, 801-801.	19.0	108
39	A Well-Connected and Conserved Nucleoplasmic Helicase Is Required for Production of Box C/D and H/ACA snoRNAs and Localization of snoRNP Proteins. Molecular and Cellular Biology, 2001, 21, 7731-7746.	2.3	104
40	Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. Journal of Cell Biology, 2011, 193, 819-829.	5.2	104
41	A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Research, 2002, 30, 4643-4649.	14.5	102
42	A highly sensitive method for mapping the 5′ termini of mRNAs. Nucleic Acids Research, 1993, 21, 1683-1684.	14.5	98
43	Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO Journal, 2001, 20, 5480-5490.	7.8	98
44	Interaction between the smallâ€nuclearâ€RNA cap hypermethylase and the spinal muscular atrophy protein, survival of motor neuron. EMBO Reports, 2003, 4, 616-622.	4.5	96
45	The Clathrin Adaptor Complex AP-1 Binds HIV-1 and MLV Gag and Facilitates Their Budding. Molecular Biology of the Cell, 2007, 18, 3193-3203.	2.1	89
46	A Dual Protein-mRNA Localization Screen Reveals Compartmentalized Translation and Widespread Co-translational RNA Targeting. Developmental Cell, 2020, 54, 773-791.e5.	7.0	88
47	Tsg101 and Alix Interact with Murine Leukemia Virus Gag and Cooperate with Nedd4 Ubiquitin Ligases during Budding. Journal of Biological Chemistry, 2005, 280, 27004-27012.	3.4	86
48	A Dynamic Scaffold of Pre-snoRNP Factors Facilitates Human Box C/D snoRNP Assembly. Molecular and Cellular Biology, 2007, 27, 6782-6793.	2.3	83
49	Long lasting control of viral rebound with a new drug ABX464 targeting Rev – mediated viral RNA biogenesis. Retrovirology, 2015, 12, 30.	2.0	78
50	Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate. Cell Reports, 2017, 18, 2635-2650.	6.4	73
51	A Proteomic Screen for Nucleolar SUMO Targets Shows SUMOylation Modulates the Function of Nop5/Nop58. Molecular Cell, 2010, 39, 618-631.	9.7	72
52	The exon-junction-complex-component metastatic lymph node 51 functions in stress-granule assembly. Journal of Cell Science, 2007, 120, 2774-2784.	2.0	69
53	The PAQosome, an R2TP-Based Chaperone for Quaternary Structure Formation. Trends in Biochemical Sciences, 2018, 43, 4-9.	7.5	67
54	Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. Journal of Cell Biology, 2017, 216, 1579-1596.	5.2	65

#	Article	IF	CITATIONS
55	A Novel Role for PA28Î ³ -Proteasome in Nuclear Speckle Organization and SR Protein Trafficking. Molecular Biology of the Cell, 2008, 19, 1706-1716.	2.1	63
56	Establishment of a Protein Frequency Library and Its Application in the Reliable Identification of Specific Protein Interaction Partners. Molecular and Cellular Proteomics, 2010, 9, 861-879.	3.8	63
57	Depletion of SMN by RNA interference in HeLa cells induces defects in Cajal body formation. Nucleic Acids Research, 2006, 34, 2925-2932.	14.5	59
58	Splicing-independent recruitment of U1 snRNP to a transcription unit in living cells. Journal of Cell Science, 2010, 123, 2085-2093.	2.0	59
59	The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nature Communications, 2018, 9, 2093.	12.8	59
60	Assembly of an Export-Competent mRNP Is Needed for Efficient Release of the 3′-End Processing Complex after Polyadenylation. Molecular and Cellular Biology, 2009, 29, 5327-5338.	2.3	58
61	Endosomal Trafficking of HIV-1 Gag and Genomic RNAs Regulates Viral Egress. Journal of Biological Chemistry, 2009, 284, 19727-19743.	3.4	57
62	HSP90 and the R2TP co-chaperone complex: Building multi-protein machineries essential for cell growth and gene expression. RNA Biology, 2012, 9, 148-154.	3.1	57
63	Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. Journal of Cell Biology, 2014, 207, 463-480.	5.2	57
64	Perispeckles are major assembly sites for the exon junction core complex. Molecular Biology of the Cell, 2012, 23, 1765-1782.	2.1	56
65	Meg3 Non-coding RNA Expression Controls Imprinting by Preventing Transcriptional Upregulation in cis. Cell Reports, 2018, 23, 337-348.	6.4	54
66	ARS2 is a general suppressor of pervasive transcription. Nucleic Acids Research, 2017, 45, 10229-10241.	14.5	53
67	Genome-wide identification of mRNAs associated with the protein SMN whose depletion decreases their axonal localization. Rna, 2013, 19, 1755-1766.	3.5	52
68	A choreography of centrosomal mRNAs reveals a conserved localization mechanism involving active polysome transport. Nature Communications, 2021, 12, 1352.	12.8	52
69	[33] Sensitive and high-resolution detection of RNA in situ. Methods in Enzymology, 2000, 318, 493-506.	1.0	51
70	NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Nucleic Acids Research, 2015, 43, 8973-8989.	14.5	49
71	A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites. Retrovirology, 2007, 4, 36.	2.0	48
72	RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3′-end processing in <i>Saccharomyces cerevisiae</i> . Rna, 2010, 16, 2570-2580.	3.5	48

#	Article	IF	CITATIONS
73	A computational framework to study sub-cellular RNA localization. Nature Communications, 2018, 9, 4584.	12.8	47
74	Hypermethylated-capped selenoprotein mRNAs in mammals. Nucleic Acids Research, 2014, 42, 8663-8677.	14.5	45
75	FISH-quant v2: a scalable and modular tool for smFISH image analysis. Rna, 2022, 28, 786-795.	3.5	45
76	Drosophila Spag Is the Homolog of RNA Polymerase II-associated Protein 3 (RPAP3) and Recruits the Heat Shock Proteins 70 and 90 (Hsp70 and Hsp90) during the Assembly of Cellular Machineries. Journal of Biological Chemistry, 2014, 289, 6236-6247.	3.4	41
77	Characterization of a Short Isoform of Human Tgs1 Hypermethylase Associating with Small Nucleolar Ribonucleoprotein Core Proteins and Produced by Limited Proteolytic Processing. Journal of Biological Chemistry, 2008, 283, 2060-2069.	3.4	39
78	Quantitative imaging of transcription in living Drosophila embryos reveals the impact of core promoter motifs on promoter state dynamics. Nature Communications, 2021, 12, 4504.	12.8	39
79	Stochastic pausing at latent HIV-1 promoters generates transcriptional bursting. Nature Communications, 2021, 12, 4503.	12.8	38
80	In VivoFootprinting of the Interaction of Proteins with DNA and RNA. Methods, 1997, 11, 151-163.	3.8	36
81	Terminal Minihelix, a Novel RNA Motif That Directs Polymerase III Transcripts to the Cell Cytoplasm. Journal of Biological Chemistry, 2001, 276, 25910-25918.	3.4	36
82	CRM1 controls the composition of nucleoplasmic pre-snoRNA complexes to licence them for nucleolar transport. EMBO Journal, 2011, 30, 2205-2218.	7.8	36
83	Deep Structural Analysis of RPAP3 and PIH1D1, Two Components of the HSP90 Co-chaperone R2TP Complex. Structure, 2018, 26, 1196-1209.e8.	3.3	36
84	Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene. Nature Communications, 2021, 12, 3158.	12.8	36
85	mRNA localization signals can enhance the intracellular effectiveness of hammerhead ribozymes. Rna, 1999, 5, 1200-1209.	3.5	35
86	Imaging HIV-1 RNA dimerization in cells by multicolor super-resolution and fluctuation microscopies. Nucleic Acids Research, 2016, 44, 7922-7934.	14.5	35
87	Live cell imaging reveals 3′-UTR dependent mRNA sorting to synapses. Nature Communications, 2019, 10, 3178.	12.8	35
88	Exon junction complex dependent mRNA localization is linked to centrosome organization during ciliogenesis. Nature Communications, 2021, 12, 1351.	12.8	35
89	Characterization of the interaction between protein Snu13p/15.5K and the Rsa1p/NUFIP factor and demonstration of its functional importance for snoRNP assembly. Nucleic Acids Research, 2014, 42, 2015-2036.	14.5	34
90	Stable assembly of HIV-1 export complexes occurs cotranscriptionally. Rna, 2014, 20, 1-8.	3.5	33

#	Article	IF	CITATIONS
91	Retroviral GAG proteins recruit AGO2 on viral RNAs without affecting RNA accumulation and translation. Nucleic Acids Research, 2012, 40, 775-786.	14.5	32
92	An active precursor in assembly of yeast nuclear ribonuclease P. Rna, 2002, 8, 1348-1360.	3.5	30
93	The exonuclease ISG20 mainly localizes in the nucleolus and the Cajal (Coiled) bodies and is associated with nuclear SMN protein-containing complexes. Journal of Cellular Biochemistry, 2006, 98, 1320-1333.	2.6	30
94	Bsr, a Nuclear-retained RNA with Monoallelic Expression. Molecular Biology of the Cell, 2007, 18, 2817-2827.	2.1	29
95	The Packaging Signal of MLV is an Integrated Module that Mediates Intracellular Transport of Genomic RNAs. Journal of Molecular Biology, 2005, 354, 330-339.	4.2	28
96	Nuclear Retention Prevents Premature Cytoplasmic Appearance of mRNA. Molecular Cell, 2012, 48, 145-152.	9.7	28
97	Nuclear localization properties of a conserved protuberance in the Sm core complex. Experimental Cell Research, 2004, 299, 199-208.	2.6	27
98	Real-time imaging of the HIV-1 transcription cycle in single living cells. Methods, 2011, 53, 62-67.	3.8	27
99	Live single-cell transcriptional dynamics via RNA labelling during the phosphate response in plants. Nature Plants, 2021, 7, 1050-1064.	9.3	27
100	CRM1 plays a nuclear role in transporting snoRNPs to nucleoli in higher eukaryotes. Nucleus, 2012, 3, 132-137.	2.2	25
101	A cotranscriptional model for 3′-end processing of the <i>Saccharomyces cerevisiae</i> pre-ribosomal RNA precursor. Rna, 2004, 10, 1572-1585.	3.5	23
102	The splicing factor SRSF3 is functionally connected to the nuclear RNA exosome for intronless mRNA decay. Scientific Reports, 2018, 8, 12901.	3.3	23
103	The kinesin KIF1C transports APC-dependent mRNAs to cell protrusions. Rna, 2021, 27, 1528-1544.	3.5	23
104	Mutations in a small region of the exportin Crm1p disrupt the daughter cellâ€specific nuclear localization of the transcription factor Ace2p in <i>Saccharomyces cerevisiae</i> . Biology of the Cell, 2008, 100, 343-354.	2.0	22
105	Intra-nuclear RNA trafficking: insights from live cell imaging. Biochimie, 2002, 84, 805-813.	2.6	21
106	New Generations of MS2 Variants and MCP Fusions to Detect Single mRNAs in Living Eukaryotic Cells. Methods in Molecular Biology, 2020, 2166, 121-144.	0.9	21
107	Monitoring Retroviral RNA Dimerization In Vivo via Hammerhead Ribozyme Cleavage. Journal of Virology, 1998, 72, 8349-8353.	3.4	20
108	Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes. Journal of Cell Science, 2012, 125, 2709-20.	2.0	18

#	Article	IF	CITATIONS
109	MLN51 triggers P-body disassembly and formation of a new type of RNA granules. Journal of Cell Science, 2014, 127, 4692-701.	2.0	18
110	Imaging of Single mRNAs in the Cytoplasm of Living Cells. Progress in Molecular and Subcellular Biology, 2008, 35, 135-150.	1.6	16
111	The Role of Supercoiling in the Motor Activity of RNA Polymerases. Methods in Molecular Biology, 2018, 1805, 215-232.	0.9	14
112	RNA transport from transcription to localized translation: a single molecule perspective. RNA Biology, 2021, 18, 1-17.	3.1	14
113	Non-canonical argonaute loading of extracellular vesicle-derived exogenous single-stranded miRNA in recipient cells. Journal of Cell Science, 2021, 134, .	2.0	14
114	TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. Nature Communications, 2021, 12, 3646.	12.8	14
115	NOPCHAP1 is a PAQosome cofactor that helps loading NOP58 on RUVBL1/2 during box C/D snoRNP biogenesis. Nucleic Acids Research, 2021, 49, 1094-1113.	14.5	14
116	The in vivo dynamics of TCERG1, a factor that couples transcriptional elongation with splicing. Rna, 2016, 22, 571-582.	3.5	13
117	Assembly and Traffic of Small Nuclear RNPs. Progress in Molecular and Subcellular Biology, 2008, 35, 79-97.	1.6	13
118	SnoRNPs, ZNHIT proteins and the R2TP pathway. Oncotarget, 2015, 6, 41399-41400.	1.8	13
119	First Responders Shape a Prompt and Sharp NF-κB-Mediated Transcriptional Response to TNF-α. IScience, 2020, 23, 101529.	4.1	11
120	Photobleaching of YFP does not produce a CFP-like species that affects FRET measurements. Nature Methods, 2006, 3, 492-493.	19.0	9
121	Detection of Ribozyme Cleavage Products Using Reverse Ligation-Mediated PCR (RL-PCR). , 1997, 74, 311-324.		7
122	The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nature Communications, 2021, 12, 4810.	12.8	7
123	Designing and Testing of Ribozymes as Therapeutic Agents. Methods, 1993, 5, 19-27.	3.8	4
124	3′-End Modification of the Adenoviral <i>VA1</i> Gene Affects Its Expression in Human Cells: Consequences for the Design of Chimeric VA1 RNA Ribozymes. Oligonucleotides, 1998, 8, 379-390.	4.3	4
125	The interaction between RPAP3 and TRBP reveals a possible involvement of the HSP90/R2TP chaperone complex in the regulation of miRNA activity. Nucleic Acids Research, 2022, 50, 2172-2189.	14.5	4

A Deep Learning Approach To Identify MRNA Localization Patterns. , 2019, , .

3

#	Article	IF	CITATIONS
127	The box C/D snoRNP assembly factor Bcd1 interacts with the histone chaperone Rtt106 and controls its transcription dependent activity. Nature Communications, 2021, 12, 1859.	12.8	3
128	Processivity and Coupling in Messenger RNA Transcription. PLoS ONE, 2010, 5, e8845.	2.5	3
129	In Vivo Footprinting of the Interaction of Proteins with DNA and RNA. Advances in Molecular and Cell Biology, 1997, , 73-109.	0.1	2
130	DNA Damage Regulates Alternative Splicing through Inhibition of RNA Polymerase II Elongation. Cell, 2009, 139, 211.	28.9	1
131	A Localization Screen Reveals Translation Factories and Widespread Co-Translational Protein Targeting. SSRN Electronic Journal, 0, , .	0.4	1
132	The transcriptional cycle of HIV-1 in real-time and live cells. Journal of Experimental Medicine, 2007, 204, i25-i25.	8.5	0
133	GOLT1B Activation in Hepatitis C Virus-Infected Hepatocytes Links ER Trafficking and Viral Replication. Pathogens, 2022, 11, 46.	2.8	Ο