Wayne G Shreffler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/700955/publications.pdf

Version: 2024-02-01

154 papers 8,636 citations

57631 44 h-index 91 g-index

164 all docs

164 docs citations

164 times ranked 5005 citing authors

#	Article	IF	CITATIONS
1	Safety of Epicutaneous Immunotherapy in Peanut-Allergic Children: REALISE Randomized Clinical Trial Results. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1864-1873.e10.	2.0	31
2	Peanut oral immunotherapy differentially suppresses clonally distinct subsets of T helper cells. Journal of Clinical Investigation, 2022, 132, .	3.9	54
3	In response to Frequency of guidelineâ€defined cow's milk allergy symptoms in infants: Secondary analysis of EAT trial data by Vincent et al. Clinical and Experimental Allergy, 2022, 52, 581-582.	1.4	3
4	Aptamer based point of care diagnostic for the detection of food allergens. Scientific Reports, 2022, 12, 1303.	1.6	11
5	Updating the CoFAR Grading Scale for Systemic Allergic Reactions in Food Allergy. Journal of Allergy and Clinical Immunology, 2022, 149, 2166-2170.e1.	1.5	30
6	Assessment of Social Limitations in Children with Peanut Allergy Undergoing Peanut Oral Immunotherapy. Journal of Allergy and Clinical Immunology, 2022, 149, AB41.	1.5	0
7	Impact of the LEAP Study on Age at Introduction of Peanut in a Suburban U.S. Cohort. Journal of Allergy and Clinical Immunology, 2022, 149, AB105.	1.5	2
8	Updating the CoFAR Grading Scale for Systemic Allergic Reactions in Food Allergy. Journal of Allergy and Clinical Immunology, 2022, 149, AB107.	1.5	0
9	Analysis of Oral Food Challenge Outcomes to Sesame. Journal of Allergy and Clinical Immunology, 2022, 149, AB113.	1.5	О
10	Predictors of time to maintenance on peanut oral immunotherapy. Journal of Allergy and Clinical Immunology, 2022, 149, AB140.	1.5	0
11	IFNG is constitutively expressed by esophagus-resident CD8+ T cells and is poised to mediate a disease-specific effect via its action on IFNGR+ eosinophils during active EoE. Journal of Allergy and Clinical Immunology, 2022, 149, AB320.	1.5	0
12	Evaluation of a group visit model for access to infant and toddler oral food challenges. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1655-1657.e1.	2.0	1
13	Prospective associations between acid suppressive therapy and food allergy in early childhood. Clinical and Experimental Allergy, 2022, 52, 711-714.	1.4	1
14	Safety of peanut (Arachis hypogaea) allergen powder-dnfp in children and teenagers with peanut allergy: Pooled summary of phase 3 and extension trials. Journal of Allergy and Clinical Immunology, 2022, 149, 2043-2052.e9.	1.5	16
15	Reply. Journal of Allergy and Clinical Immunology, 2022, , .	1.5	0
16	Kinetics of basophil hyporesponsiveness during short-course peanut oral immunotherapy. Journal of Allergy and Clinical Immunology, 2022, 150, 1144-1153.	1.5	3
17	Age and eczema severity, but not family history, are major risk factors for peanut allergy in infancy. Journal of Allergy and Clinical Immunology, 2021, 147, 984-991.e5.	1.5	52
18	Ara h 2–specific IgE is superior to whole peanut extract–based serology or skin prick test for diagnosis of peanut allergy in infancy. Journal of Allergy and Clinical Immunology, 2021, 147, 977-983.e2.	1.5	40

#	Article	IF	CITATIONS
19	In vivo optical endomicroscopy: two decades of translational research towards next generation diagnosis of eosinophilic esophagitis. Translational Medicine Communications, 2021, 6, .	0.5	1
20	Rates of Peanut Discontinuation After Introduction Among High-Risk Infants. Journal of Allergy and Clinical Immunology, 2021, 147, AB165.	1.5	0
21	Which Aspects Of Atopic Dermatitis Predict Peanut Allergy In Infancy?. Journal of Allergy and Clinical Immunology, 2021, 147, AB97.	1.5	0
22	Transcriptomic and Gene Set Enrichment Analysis of Peanut stimulated CD4+ T cells during Peanut Oral Immunotherapy. Journal of Allergy and Clinical Immunology, 2021, 147, AB165.	1.5	0
23	Early Growth in Children with IgE and Non-IgE-Mediated Food Allergy in a Healthy Infant Cohort. Journal of Allergy and Clinical Immunology, 2021, 147, AB102.	1.5	0
24	Gastrointestinal immunopathology of food protein–induced enterocolitis syndrome and other non-immunoglobulin E–mediated food allergic diseases. Annals of Allergy, Asthma and Immunology, 2021, 126, 516-523.	0.5	9
25	Continuous and Daily Oral Immunotherapy for Peanut Allergy: Results from a 2-Year Open-Label Follow-On Study. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1879-1889.e13.	2.0	53
26	Identification of antigen-specific TCR sequences based on biological and statistical enrichment in unselected individuals. JCI Insight, 2021, 6, .	2.3	9
27	Reply. Journal of Allergy and Clinical Immunology, 2021, 148, 273.	1.5	0
28	Peanut protein acts as a TH2 adjuvant by inducing RALDH2 in human antigen-presenting cells. Journal of Allergy and Clinical Immunology, 2021, 148, 182-194.e4.	1.5	19
29	Reply. Journal of Allergy and Clinical Immunology, 2021, 148, 275.	1.5	0
30	Clonally expanded, GPR15-expressing pathogenic effector T $<$ sub $>$ H $<$ /sub $>$ 2 cells are associated with eosinophilic esophagitis. Science Immunology, 2021, 6, .	5.6	47
31	Dogmas, challenges, and promises in phase III allergen immunotherapy studies. World Allergy Organization Journal, 2021, 14, 100578.	1.6	3
32	Reply. Journal of Allergy and Clinical Immunology, 2021, , .	1.5	0
33	Expansion of the CD4+ effector T-cell repertoire characterizes peanut-allergic patients with heightened clinical sensitivity. Journal of Allergy and Clinical Immunology, 2020, 145, 270-282.	1.5	39
34	Epinephrine Auto-Injector Parental Survey and Skills Demonstration. Journal of Allergy and Clinical Immunology, 2020, 145, AB232.	1.5	3
35	Determining Safety and Predictive Success of Baked Egg Oral Food Challenges in Infants/Toddlers. Journal of Allergy and Clinical Immunology, 2020, 145, AB218.	1.5	0
36	Differences In Transcriptional Phenotype Between Highly Reactive And Hyporeactive Peanut Allergic Patients Are Not Reflected In Different Outcomes Of Oral Immunotherapy. Journal of Allergy and Clinical Immunology, 2020, 145, AB134.	1.5	O

3

#	Article	IF	CITATIONS
37	The Incidence of Drug Allergy and Presentation of Symptoms in a Healthy, Birth Cohort. Journal of Allergy and Clinical Immunology, 2020, 145, AB96.	1.5	0
38	Increased IgE-Mediated Food Allergy With Food Protein-Induced Allergic Proctocolitis. Pediatrics, 2020, 146, .	1.0	27
39	Sialylation of immunoglobulin E is a determinant of allergic pathogenicity. Nature, 2020, 582, 265-270.	13.7	93
40	Food aversion and poor weight gain in food protein-induced enterocolitis syndrome: a retrospective study. Journal of Allergy and Clinical Immunology, 2020, 145, AB52.	1.5	1
41	Consensus report from the Food Allergy Research & Education (FARE) 2019 Oral Immunotherapy for Food Allergy Summit. Journal of Allergy and Clinical Immunology, 2020, 146, 244-249.	1.5	45
42	Oral food challenge outcomes in children under 3 years of age. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3653-3656.e3.	2.0	7
43	High rate of peanut allergy among infants with atopic dermatitis before peanut introduction. Journal of Allergy and Clinical Immunology, 2020, 145, AB340.	1.5	0
44	Identifying Demographics and Baseline Clinical Characteristics Associated with Safety Outcomes During AR101 Therapy. Journal of Allergy and Clinical Immunology, 2020, 145, AB132.	1.5	3
45	Maternal Prenatal Use of Reflux Medication and the Development of Food Protein-Induced Allergic Proctocolitis in Offspring. Journal of Allergy and Clinical Immunology, 2020, 145, AB51.	1.5	0
46	Long-term, open-label extension study of the efficacy and safety of epicutaneous immunotherapy for peanut allergy in children: PEOPLE 3-year results. Journal of Allergy and Clinical Immunology, 2020, 146, 863-874.	1.5	63
47	Ara h 2 Specific IgA B Cell Repertoire Matures During Peanut Oral Immunotherapy. Journal of Allergy and Clinical Immunology, 2020, 145, AB181.	1.5	1
48	Open-Label Follow-Up of the PEPITES Study (PEOPLE) to Evaluate the Long-Term Efficacy and Safety of Epicutaneous Peanut Immunotherapy in Peanut-Allergic Children. Journal of Allergy and Clinical Immunology, 2020, 145, AB141.	1.5	0
49	The Role of Bile Acids in Food Allergy and Responses to Oral Immunotherapy by Metabolomic Profiling. Journal of Allergy and Clinical Immunology, 2020, 145, AB244.	1.5	1
50	Food aversion and poor weight gain in food protein–induced enterocolitis syndrome: AÂretrospective study. Journal of Allergy and Clinical Immunology, 2020, 145, 1430-1437.e11.	1.5	34
51	Prospective Assessment of Pediatrician-Diagnosed Food Protein–Induced Allergic Proctocolitis by Gross or Occult Blood. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 1692-1699.e1.	2.0	50
52	Pathophysiology of immunoglobulin Eâ€mediated food allergy. Journal of Food Allergy, 2020, 2, 7-10.	0.1	6
53	Novel vaccines: Technology and development. Journal of Allergy and Clinical Immunology, 2019, 143, 844-851.	1.5	9
54	Analysis of Oral Food Challenge Outcomes in IgE-Mediated Food Allergies to Almond in a Large Cohort. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2359-2368.e3.	2.0	19

#	Article	IF	CITATIONS
55	Acid Suppression in Infancy is not Prospectively Associated with Childhood IgE-Mediated Food Allergy. Journal of Allergy and Clinical Immunology, 2019, 143, AB252.	1.5	O
56	Infant/Toddler Oral Food Challenge Outcomes. Journal of Allergy and Clinical Immunology, 2019, 143, AB166.	1.5	0
57	Early decrease in basophil sensitivity to Ara h 2 precedes sustained unresponsiveness after peanut oral immunotherapy. Journal of Allergy and Clinical Immunology, 2019, 144, 1310-1319.e4.	1.5	59
58	Deriving individual threshold doses from clinical food challenge data for population risk assessment of food allergens. Journal of Allergy and Clinical Immunology, 2019, 144, 1290-1309.	1.5	37
59	Current and Future Treatment of Peanut Allergy. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 357-365.	2.0	28
60	Human monoclonal antibodies to Ara h 2 inhibit allergenâ€induced, lgEâ€mediated cell activation. Clinical and Experimental Allergy, 2019, 49, 1154-1157.	1.4	6
61	Identification of Peanut-Allergic Participants for Oral Immunotherapy With AR101 Using Clinical Reaction History and Immunologic Markers Without Oral Food Challenge – A Comparison Between RAMSES and PALISADE Trials. Journal of Allergy and Clinical Immunology, 2019, 143, AB244.	1.5	1
62	Immune Progression Within the Memory CD4+ T Cell Compartment is a Marker of Heightened Clinical Sensitivity for Patients with Peanut Allergy. Journal of Allergy and Clinical Immunology, 2019, 143, AB88.	1.5	0
63	A Prospective Assessment of Food Protein-Induced Allergic Proctocolitis from the GMAP Healthy Infant Cohort. Journal of Allergy and Clinical Immunology, 2019, 143, AB136.	1.5	3
64	Shy and/or fearful temperament not associated with IgE mediated food allergy in early childhood. Journal of Allergy and Clinical Immunology, 2019, 143, AB274.	1.5	1
65	TCR Repertoire Analysis Reveals Public Motifs with High Probability for Allergen Epitope Specificity. Journal of Allergy and Clinical Immunology, 2019, 143, AB83.	1.5	0
66	Incidence and Clinical Presentation of Food Protein-Induced Enterocolitis Syndrome in a Prospective Healthy Infant Cohort. Journal of Allergy and Clinical Immunology, 2019, 143, AB157.	1.5	1
67	Analysis of Oral Food Challenges to Determine Predictors of Almond Hypersensitivity. Journal of Allergy and Clinical Immunology, 2019, 143, AB165.	1.5	0
68	Human BCR analysis of single-sorted, putative IgE+ memory B cells in food allergy. Journal of Allergy and Clinical Immunology, 2019, 144, 336-339.e6.	1.5	43
69	Designer covalent heterobivalent inhibitors prevent IgE-dependent responses to peanut allergen. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8966-8974.	3.3	14
70	Effect of Epicutaneous Immunotherapy vs Placebo on Reaction to Peanut Protein Ingestion Among Children With Peanut Allergy. JAMA - Journal of the American Medical Association, 2019, 321, 946.	3.8	206
71	lgEhi Endophenotype in Those with Transient Desensitization after Peanut Oral Immunotherapy. Journal of Allergy and Clinical Immunology, 2019, 143, AB83.	1.5	0
72	Food-Protein Induced Allergic Proctocolitis is Prospectively Associated with IgE-Mediated Milk and Egg Allergies by Age 3. Journal of Allergy and Clinical Immunology, 2019, 143, AB201.	1.5	2

#	Article	IF	CITATIONS
73	TCR sequencing paired with massively parallel $3\hat{a} \in ^2$ RNA-seq reveals clonotypic T cell signatures. Nature Immunology, 2019, 20, 1692-1699.	7.0	89
74	Promise of personalized medicine. Annals of Allergy, Asthma and Immunology, 2019, 123, 534.	0.5	1
75	Integrin αM activation and upregulation on esophageal eosinophils and periostinâ€mediated eosinophil survival in eosinophilic esophagitis. Immunology and Cell Biology, 2018, 96, 426-438.	1.0	14
76	Effect of Epicutaneous Immunotherapy on Inducing Peanut Desensitization in Peanut-Allergic Children: Topline Peanut Epicutaneous Immunotherapy Efficacy and Safety (PEPITES) Randomized Clinical Trial Results. Journal of Allergy and Clinical Immunology, 2018, 141, AB410.	1.5	6
77	The importance of reducing risk in peanut allergy: Current and future therapies. Annals of Allergy, Asthma and Immunology, 2018, 120, 124-127.	0.5	18
78	Dataâ€driven programmatic approach to analysis of basophil activation tests. Cytometry Part B - Clinical Cytometry, 2018, 94, 667-673.	0.7	17
79	Physician-diagnosed eczema is an independent risk factor for incident mouse skin test sensitization in adults. Allergy and Asthma Proceedings, 2018, 39, 311-315.	1.0	1
80	AR101 Oral Immunotherapy for Peanut Allergy. New England Journal of Medicine, 2018, 379, 1991-2001.	13.9	518
81	Nasopharyngeal <scp>CCL</scp> 5 in infants with severe bronchiolitis and risk of recurrent wheezing: A multiâ€eenter prospective cohort study. Clinical and Experimental Allergy, 2018, 48, 1063-1067.	1.4	12
82	The limited utility of the double-blind food challenge in diagnosing non-IgE mediated cow's milk allergy in infants. Journal of Allergy and Clinical Immunology, 2018, 141, AB256.	1.5	0
83	Decrease in early basophil sensitivity to Ara h 2 correlates with sustained unresponsiveness in peanut oral immunotherapy. Journal of Allergy and Clinical Immunology, 2018, 141, AB287.	1.5	0
84	Enhancing the Safety and Efficacy of Food Allergy Immunotherapy: a Review of Adjunctive Therapies. Clinical Reviews in Allergy and Immunology, 2018, 55, 172-189.	2.9	36
85	AGE-RELATED FINDINGS FROM THE PEANUT ALLERGY ORAL IMMUNOTHERAPY STUDY OF AR101 FOR DESENSITIZATION (PALISADE) STUDY. Annals of Allergy, Asthma and Immunology, 2018, 121, S4.	0.5	6
86	Patterns of immune development in urban preschoolers with recurrent wheeze and/or atopy. Journal of Allergy and Clinical Immunology, 2017, 140, 836-844.e7.	1.5	23
87	Peanut Allergen Threshold Study (PATS): Novel single-dose oral food challenge study to validate eliciting doses in children with peanut allergy. Journal of Allergy and Clinical Immunology, 2017, 139, 1583-1590.	1.5	106
88	Road map for the clinical application of the basophil activation test in food allergy. Clinical and Experimental Allergy, 2017, 47, 1115-1124.	1.4	72
89	Prospective Incidences And The Relationship Between Allergic Proctocolitis And IgE-Mediated Food Allergies In Early Childhood. Journal of Allergy and Clinical Immunology, 2017, 139, AB274.	1.5	1
90	Probiotics and oral immunotherapy for peanut allergy. The Lancet Child and Adolescent Health, 2017, 1, e1.	2.7	0

#	Article	IF	Citations
91	Eosinophil Integrin αM (CD11B/MAC-1) Promotes Eosinophilic Esophagitis Through Interaction with Epithelial-Derived Periostin. Gastroenterology, 2017, 152, S870-S871.	0.6	O
92	Effect of Varying Doses of Epicutaneous Immunotherapy vs Placebo on Reaction to Peanut Protein Exposure Among Patients With Peanut Sensitivity. JAMA - Journal of the American Medical Association, 2017, 318, 1798.	3.8	185
93	Atopy as a Modifier of the Relationships Between Endotoxin Exposure and Symptoms Among Laboratory Animal Workers. Annals of Work Exposures and Health, 2017, 61, 1024-1028.	0.6	3
94	Presumed Allergic Proctocolitis Resolves with Probiotic Monotherapy: A Report of 4 Cases. American Journal of Case Reports, 2016, 17, 621-624.	0.3	14
95	The influence of atopy and asthma on immune responses in innerâ€city adults. Immunity, Inflammation and Disease, 2016, 4, 80-90.	1.3	2
96	Basophil activation testing in diagnosis and monitoring of allergic disease – an overview. Allergo Journal International, 2016, 25, 106-113.	0.9	5
97	Mild Ocular and Nasal Symptoms Are Not Indicative of Reactions during Open Oral Food Challenges. Journal of Allergy and Clinical Immunology, 2016, 137, AB125.	1.5	1
98	Peanut and Arah2 Specific Immunoglobulin E Is Predictive of Sustained Unresponsiveness Following Peanut Oral Immunotherapy. Journal of Allergy and Clinical Immunology, 2016, 137, AB194.	1.5	1
99	Mechanisms Underlying Induction of Tolerance to Foods. Immunology and Allergy Clinics of North America, 2016, 36, 87-102.	0.7	50
100	Quality of life for children with eosinophilic esophagitis: a comparison of patients' and parents' perceptions and associated factors using the PedsQLâ,,¢ 3.0 Eosinophilic Esophagitis Module. Clinical and Translational Allergy, 2015, 5, P159.	1.4	0
101	Longitudinal Perspective on Managing Refractory Eosinophilic Esophagitis. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 951-956.	2.0	14
102	Epicutaneous Immunotherapy (EPIT) Is Effective and Safe to Treat Peanut Allergy: A Multi-National Double-Blind Placebo-Controlled Randomized Phase IIb Trial. Journal of Allergy and Clinical Immunology, 2015, 135, AB390.	1.5	26
103	Peanut oral immunotherapy transiently expands circulating Ara h 2–specific B cells with a homologous repertoire in unrelated subjects. Journal of Allergy and Clinical Immunology, 2015, 136, 125-134.e12.	1.5	103
104	Cesarean section and antibiotic use found to be associated with eosinophilic esophagitis. Journal of Allergy and Clinical Immunology: in Practice, 2014, 2, 475-477.e1.	2.0	64
105	Tu1365 Tethered Capsule Endomicroscopy for Eosinophilic Esophagitis. Gastrointestinal Endoscopy, 2014, 79, AB513-AB514.	0.5	0
106	Associations between serum folate and vitamin D levels and incident mouse sensitization in adults. Journal of Allergy and Clinical Immunology, 2014, 133, 399-404.	1.5	11
107	BATting above average: Basophil activation testing for peanut allergy. Journal of Allergy and Clinical Immunology, 2014, 134, 653-654.	1.5	4
108	RE: Reply to Lifschitz. Journal of Allergy and Clinical Immunology: in Practice, 2014, 2, 643-644.	2.0	0

#	Article	IF	CITATIONS
109	CCR8 Is a Receptor For CCL18 On Human Th2 Cells. Journal of Allergy and Clinical Immunology, 2014, 133, AB170.	1.5	0
110	Cow's Milk Allergy: A New Approach Needed?. Journal of Pediatrics, 2013, 163, 620-622.	0.9	4
111	Induction of Antigen-Specific B Cells During Peanut Oral Immunotherapy Using Novel Tetramer-Based Approach. Journal of Allergy and Clinical Immunology, 2013, 131, AB86.	1.5	0
112	Tolerance of Baked Milk in a Subset of Patients with Cow's Milk-Mediated Eosinophilic Esophagitis. Journal of Allergy and Clinical Immunology, 2013, 131, AB181.	1.5	0
113	Basophil reactivity, wheal size, and immunoglobulin levels distinguish degrees of cow's milk tolerance. Journal of Allergy and Clinical Immunology, 2013, 131, 180-186.e3.	1.5	130
114	Identification of human CCR8 as a CCL18 receptor. Journal of Experimental Medicine, 2013, 210, 1889-1898.	4.2	153
115	Peanut Allergen Threshold Study (PATS): validation of eliciting doses using a novel single-dose challenge protocol. Allergy, Asthma and Clinical Immunology, 2013, 9, 35.	0.9	23
116	Innate immunostimulatory properties of allergens and their relevance to food allergy. Seminars in Immunopathology, 2012, 34, 617-632.	2.8	41
117	Oral Immunotherapy for Treatment of Egg Allergy in Children. New England Journal of Medicine, 2012, 367, 233-243.	13.9	606
118	The role of dendritic cells in food allergy. Journal of Allergy and Clinical Immunology, 2012, 129, 921-928.	1.5	74
119	Walnut Allergy in Peanut-Allergic Patients: Significance of Sequential Epitopes of Walnut Homologous to Linear Epitopes of Ara h 1 , 2 and 3 in Relation to Clinical Reactivity. International Archives of Allergy and Immunology, 2012, 157, 238-245.	0.9	30
120	Determinants of Food Allergy. Immunology and Allergy Clinics of North America, 2012, 32, 11-33.	0.7	45
121	Sublingual immunotherapy for peanut allergy: Clinical and immunologic evidence of desensitization. Journal of Allergy and Clinical Immunology, 2011, 127, 640-646.e1.	1.5	324
122	Microarrayed recombinant allergens for diagnostic testing. Journal of Allergy and Clinical Immunology, 2011, 127, 843-849.	1.5	68
123	Both the variability and level of mouse allergen exposure influence the phenotype of the immune response in workers at a mouse facility. Journal of Allergy and Clinical Immunology, 2011, 128, 390-396.e7.	1.5	38
124	Food Allergy and Complementary Feeding. Nestle Nutrition Institute Workshop Series, 2011, 68, 141-152.	1.5	2
125	Correlation of IgE/IgG4 milk epitopes and affinity of milk-specific IgE antibodies with different phenotypes of clinical milk allergy. Journal of Allergy and Clinical Immunology, 2010, 125, 695-702.e6.	1.5	186
126	Oral peanut immunotherapy in children with peanut anaphylaxis. Journal of Allergy and Clinical Immunology, 2010, 126, 83-91.e1.	1.5	353

#	Article	IF	Citations
127	Identification of IgE sequential epitopes of lentil (Len c 1) by means of peptide microarray immunoassay. Journal of Allergy and Clinical Immunology, 2010, 126, 596-601.e1.	1.5	50
128	The Urban Environment and Childhood Asthma (URECA) birth cohort study: design, methods, and study population. BMC Pulmonary Medicine, 2009, 9, 17.	0.8	90
129	Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein. Journal of Allergy and Clinical Immunology, 2009, 123, 43-52.e7.	1.5	227
130	The perfectly potent peanut. Journal of Allergy and Clinical Immunology, 2009, 123, 352-353.	1.5	2
131	Allergen-specific basophil suppression associated with clinical tolerance in patients with milk allergy. Journal of Allergy and Clinical Immunology, 2009, 123, 789-794.e20.	1.5	124
132	Clinical efficacy and immune regulation with peanut oral immunotherapy. Journal of Allergy and Clinical Immunology, 2009, 124, 292-300.e97.	1.5	610
133	Epinephrine treatment is infrequent and biphasic reactions are rare in food-induced reactions during oral food challenges in children. Journal of Allergy and Clinical Immunology, 2009, 124, 1267-1272.	1.5	84
134	Development of a novel peptide microarray for large-scale epitope mapping of food allergens. Journal of Allergy and Clinical Immunology, 2009, 124, 315-322.e3.	1.5	115
135	Microarrayed Allergen Molecules for Diagnostics of Allergy. Methods in Molecular Biology, 2009, 524, 259-272.	0.4	27
136	Type 1 diabetes, autoimmune thyroid disease, and chronic urticaria. Pediatric Diabetes, 2008, 9, 508-511.	1.2	16
137	Peanut epitopes for IgE and IgG4 in peanut-sensitized children in relation to severity of peanut allergy. Journal of Allergy and Clinical Immunology, 2008, 121, 737-743.e10.	1.5	203
138	TH2 adjuvants: Implications for food allergy. Journal of Allergy and Clinical Immunology, 2008, 121, 1311-1320.	1.5	70
139	Tolerance to extensively heated milk in children with cow's milk allergy. Journal of Allergy and Clinical Immunology, 2008, 122, 342-347.e2.	1.5	465
140	Immunologic changes in children with egg allergy ingesting extensively heated egg. Journal of Allergy and Clinical Immunology, 2008, 122, 977-983.e1.	1.5	426
141	Mapping of the IgE and IgG4 sequential epitopes of milk allergens with a peptide microarray–based immunoassay. Journal of Allergy and Clinical Immunology, 2008, 122, 589-594.	1.5	174
142	Basic science for the practicing physician: flow cytometry and cell sorting. Annals of Allergy, Asthma and Immunology, 2008, 101, 544-549.	0.5	9
143	Lack of association of HLA class II alleles with peanut allergy. Annals of Allergy, Asthma and Immunology, 2006, 96, 865-869.	0.5	44
144	Skin prick test to egg white provides additional diagnostic utility to serum egg white–specific IgE antibody concentration in children. Journal of Allergy and Clinical Immunology, 2006, 117, 842-847.	1.5	91

#	Article	IF	CITATIONS
145	Evaluation of basophil activation in food allergy: present and future applications. Current Opinion in Allergy and Clinical Immunology, 2006, 6, 226-233.	1.1	48
146	Standardization and performance evaluation of mononuclear cell cytokine secretion assays in a multicenter study. BMC Immunology, 2006, 7, 29.	0.9	26
147	The Major Glycoprotein Allergen from <i>Arachis hypogaea</i> , Ara h 1, Is a Ligand of Dendritic Cell-Specific ICAM-Grabbing Nonintegrin and Acts as a Th2 Adjuvant In Vitro. Journal of Immunology, 2006, 177, 3677-3685.	0.4	249
148	IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2. Journal of Allergy and Clinical Immunology, 2005, 116, 893-899.	1.5	184
149	Microarray immunoassay: Association of clinical history, in vitro lgE function, and heterogeneity of allergenic peanut epitopes. Journal of Allergy and Clinical Immunology, 2004, 113, 776-782.	1.5	323
150	unc-8, a DEG/ENaC Family Member, Encodes a Subunit of a Candidate Mechanically Gated Channel That Modulates C. elegans Locomotion. Neuron, 1997, 18, 107-119.	3.8	195
151	Genes controlling ion permeability in both motorneurons and muscle. Behavior Genetics, 1997, 27, 211-221.	1.4	14
152	A Rapid and Simple Diagnostic Test for Active Visceral Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 1991, 44, 272-277.	0.6	35
153	An Improved Serodiagnostic Procedure for Visceral Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 1990, 43, 632-639.	0.6	58
154	Peanut Oral Immunotherapy Suppresses Clonally Distinct Subsets of T Helper Cells. SSRN Electronic Journal, 0, , .	0.4	1