Guido Schnabel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7009311/publications.pdf

Version: 2024-02-01

96 papers

3,079 citations

147801 31 h-index 51 g-index

96 all docs 96 docs citations

96 times ranked 1742 citing authors

#	Article	IF	CITATIONS
1	Biology, epidemiology, and management of diseases of peach driving the spray program in the southeastern United States. Scientia Horticulturae, 2022, 295, 110818.	3.6	6
2	Sensitivity to fungicides in isolates of Colletotrichum gloeosporioides and C. acutatum species complexes and efficacy against anthracnose diseases. Pesticide Biochemistry and Physiology, 2022, 182, 105049.	3.6	17
3	Colletotrichum Species Associated with Peaches in China. Journal of Fungi (Basel, Switzerland), 2022, 8, 313.	3.5	20
4	A High-Quality Genome Resource of <i>Botrytis fragariae</i> , a New and Rapidly Spreading Fungal Pathogen Causing Strawberry Gray Mold in the United States. Phytopathology, 2021, 111, 496-499.	2.2	3
5	Characterization of High Fludioxonil Resistance in <i>Botrytis cinerea</i> Isolates from Calibrachoa Flowers. Phytopathology, 2021, 111, 478-484.	2.2	7
6	Cross-resistance to the new fungicide mefentrifluconazole in DMI-resistant fungal pathogens. Pesticide Biochemistry and Physiology, 2021, 171, 104737.	3.6	40
7	In vitro co-culture system for Prunus spp. and Armillaria mellea in phenolic foam rooting matric. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 387-397.	2.1	9
8	Inherent tolerance of Colletotrichum gloeosporioides to fludioxonil. Pesticide Biochemistry and Physiology, 2021, 172, 104767.	3.6	19
9	Copper tolerance in Xanthomonas arboricola pv. pruni in South Carolina peach orchards. Plant Disease, 2021, , .	1.4	2
10	Characterization of difenoconazole resistance in <i>Lasiodiplodia theobromae</i> from papaya in Brazil. Pest Management Science, 2020, 76, 1344-1352.	3.4	18
11	Reduced sensitivity of azoxystrobin and thiophanate-methyl resistance in Lasiodiplodia theobromae from papaya. Pesticide Biochemistry and Physiology, 2020, 162, 60-68.	3.6	16
12	Competitive ability of multi-fungicide resistant Botrytis cinerea in a blackberry planting over three years. Pesticide Biochemistry and Physiology, 2020, 163, 1-7.	3.6	14
13	Paralogous <i>CYP51</i> Genes of <i>Colletotrichum</i> spp. Mediate Differential Sensitivity to Sterol Demethylation Inhibitors. Phytopathology, 2020, 110, 615-625.	2.2	22
14	Managing <i>Colletotrichum</i> on Fruit Crops: A "Complex―Challenge. Plant Disease, 2020, 104, 2301-2316.	1.4	86
15	Quinone outside inhibitor-resistant Colletotrichum nymphaeae isolates from strawberry lack mutations in cytb gene. Journal of Plant Pathology, 2020, 102, 681-683.	1.2	7
16	Evaluation of the Intelligent Sprayer System in Peach Production. Plant Disease, 2020, 104, 3207-3212.	1.4	16
17	Preventative Root-Collar Excavation Reduces Peach Tree Mortality Caused By Armillaria Root Rot On Replant Sites. Plant Disease, 2020, 104, 1274-1279.	1.4	8
18	Histone H3 gene is not a suitable marker to distinguish Alternaria tenuissima from A. alternata affecting potato. PLoS ONE, 2020, 15, e0231961.	2.5	1

#	Article	IF	CITATIONS
19	Understanding Plant Diseases Using Art and Technology. International Journal of Fruit Science, 2020, 20, 959-966.	2.4	2
20	Relationship of Pink Pigmentation in Rose Petals and Botrytis cinerea. Plant Health Progress, 2020, 21, 152-156.	1.4	1
21	Reduction of Botrytis cinerea Infection on Petunia Flowers following Calcium Spray Applications. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 188-191.	1.0	3
22	Calcium Application Method Impacts Botrytis Blight Severity on Petunia Flowers. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 192-195.	1.0	4
23	Infrequent Occurrence of Peach Skin Streaking and the Role of Rainwater Attributes on Symptom Development. Plant Disease, 2019, 103, 2606-2611.	1.4	3
24	Characterization of <i>Botrytis cinerea</i> From Commercial Cut Flower Roses. Plant Disease, 2019, 103, 1577-1583.	1.4	34
25	Preservation of <i>Monilinia fructicola</i> Genotype Diversity Within Fungal Cankers. Plant Disease, 2019, 103, 526-530.	1.4	5
26	Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide Biochemistry and Physiology, 2019, 158, 18-24.	3.6	48
27	Within-Season Shift in Fungicide Resistance Profiles of <i>Botrytis cinerea</i> in California Strawberry Fields. Plant Disease, 2019, 103, 59-64.	1.4	26
28	Investigation of Fungi Causing Twig Blight Diseases on Peach Trees in South Carolina. Plant Disease, 2019, 103, 705-710.	1.4	10
29	<i>atrB</i> -Associated Fludioxonil Resistance in <i>Botrytis fragariae</i> Not Linked to Mutations in Transcription Factor <i>mrr1</i> . Phytopathology, 2019, 109, 839-846.	2.2	12
30	First Report of <i>Colletotrichum fioriniae</i> and <i>C. nymphaeae</i> Causing Anthracnose on Cherry Tomatoes in South Carolina. Plant Disease, 2019, 103, 1042-1042.	1.4	5
31	Fungicide Resistance in <i>Botrytis fragariae</i> and Species Prevalence in the Mid-Atlantic United States. Plant Disease, 2018, 102, 964-969.	1.4	9
32	Genotypic and Phenotypic Variations in <i>Botrytis</i> spp. Isolates from Single Strawberry Flowers. Plant Disease, 2018, 102, 179-184.	1.4	13
33	Recovery Plan for <i>Monilinia polystroma</i> Causing Asiatic Brown Rot of Stone Fruit. Plant Health Progress, 2018, 19, 107-124.	1.4	5
34	Inherent Resistance to 14α-Demethylation Inhibitor Fungicides in <i>Colletotrichum truncatum</i> ls Likely Linked to <i>CYP51A</i> and/or <i>CYP51B</i> Gene Variants. Phytopathology, 2018, 108, 1263-1275.	2.2	29
35	Draft Genome Resources for the Phytopathogenic Fungi <i>Monilinia fructicola</i> , <i>M. fructigena</i> , <i>M. polystroma</i> , and <i>M. laxa</i> , the Causal Agents of Brown Rot. Phytopathology, 2018, 108, 1141-1142.	2.2	19
36	Function of the genetic element â€~Mona' associated with fungicide resistance in <i>Monilinia fructicola</i> . Molecular Plant Pathology, 2017, 18, 90-97.	4.2	33

#	Article	IF	Citations
37	Identification and Characterization of <i>Botrytis fragariae</i> Isolates on Strawberry in the United States. Plant Disease, 2017, 101, 1769-1773.	1.4	20
38	Novel geneâ€sequence markers for isolate tracking within Monilinia fructicola lesions. Pest Management Science, 2017, 73, 1822-1829.	3.4	2
39	Investigation of Potential Causes of Peach Skin Streaking. Plant Disease, 2017, 101, 1601-1605.	1.4	5
40	Meta-Analysis of a Web-Based Disease Forecast System for Control of Anthracnose and Botrytis Fruit Rots of Strawberry in Southeastern United States. Plant Disease, 2017, 101, 1910-1917.	1.4	32
41	Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary. Environmental Microbiology, 2016, 18, 3840-3849.	3.8	75
42	Efficacy of SDHI fungicides, including benzovindiflupyr, against <i>Colletotrichum</i> species. Pest Management Science, 2016, 72, 1844-1853.	3.4	94
43	Resistance to Increasing Chemical Classes of Fungicides by Virtue of "Selection by Association―in <i>Botrytis cinerea</i> . Phytopathology, 2016, 106, 1513-1520.	2.2	44
44	Effect of Fungicide Applications on Monilinia fructicola Population Diversity and Transposon Movement. Phytopathology, 2016, 106, 1504-1512.	2.2	10
45	Monitoring Resistance to SDHI Fungicides in <i>Botrytis cinerea</i> From Strawberry Fields. Plant Disease, 2016, 100, 959-965.	1.4	54
46	Evaluation of leaf wetness duration models for operational use in strawberry disease-warning systems in four US states. International Journal of Biometeorology, 2016, 60, 1761-1774.	3.0	21
47	Proposal for a unified nomenclature for targetâ€site mutations associated with resistance to fungicides. Pest Management Science, 2016, 72, 1449-1459.	3.4	76
48	Characterization of <i>Botrytis cinerea</i> Isolates from Strawberry with Reduced Sensitivity to Polyoxin D Zinc Salt. Plant Disease, 2016, 100, 2057-2061.	1.4	9
49	Fungicide-induced transposon movement in Monilinia fructicola. Fungal Genetics and Biology, 2015, 85, 38-44.	2.1	23
50	Fitness and Competitive Ability of <i>Alternaria alternata</i> Field Isolates with Resistance to SDHI, QoI, and MBC Fungicides. Plant Disease, 2015, 99, 1744-1750.	1.4	37
51	Investigation of the <i>Colletotrichum gloeosporioides</i> Species Complex Causing Peach Anthracnose in South Carolina. Plant Disease, 2015, 99, 797-805.	1.4	49
52	Resistance in <i>Colletotrichum siamense</i> From Peach and Blueberry to Thiophanate-Methyl and Azoxystrobin. Plant Disease, 2015, 99, 806-814.	1.4	69
53	Identification and Characterization of Three <i>Monilinia</i> Species from Plum in China. Plant Disease, 2015, 99, 1775-1783.	1.4	24
54	Independent Emergence of Resistance to Seven Chemical Classes of Fungicides in <i>Botrytis cinerea</i> . Phytopathology, 2015, 105, 424-432.	2.2	109

#	Article	IF	CITATIONS
55	Monitoring Resistance by Bioassay: Relating Results to Field Use Using Culturing Methods. , 2015, , 281-293.		11
56	Characterization of Iprodione Resistance in <i>Botrytis cinerea</i> from Strawberry and Blackberry. Phytopathology, 2014, 104, 396-402.	2.2	74
57	Fungicide Resistance Profiles in <i>Botrytis cinerea</i> from Strawberry Fields of Seven Southern U.S. States. Plant Disease, 2014, 98, 825-833.	1.4	90
58	Evolutionary analysis revealed the horizontal transfer of the Cyt b gene from Fungi to Chromista. Molecular Phylogenetics and Evolution, 2014, 76, 155-161.	2.7	1
59	Location-Specific Fungicide Resistance Profiles and Evidence for Stepwise Accumulation of Resistance in <i>Botrytis cinerea</i> . Plant Disease, 2014, 98, 1066-1074.	1.4	50
60	Resistance to Fludioxonil in <i>Botrytis cinerea</i> Isolates from Blackberry and Strawberry. Phytopathology, 2014, 104, 724-732.	2.2	59
61	Resistance to Cyprodinil and Lack of Fludioxonil Resistance in <i>Botrytis cinerea</i> Isolates from Strawberry in North and South Carolina. Plant Disease, 2013, 97, 81-85.	1.4	69
62	Fenhexamid Resistance in <i>Botrytis cinerea</i> from Strawberry Fields in the Carolinas Is Associated with Four Target Gene Mutations. Plant Disease, 2013, 97, 271-276.	1.4	51
63	Identification and Prevalence of Botrytis spp. from Blackberry and Strawberry Fields of the Carolinas. Plant Disease, 2012, 96, 1634-1637.	1.4	17
64	Persistence of Propiconazole in Peach Roots and Efficacy of Trunk Infusions for <i>Armillaria</i> Rot Control. International Journal of Fruit Science, 2012, 12, 437-449.	2.4	6
65	<i>Botrytis caroliniana</i> , a new species isolated from blackberry in South Carolina. Mycologia, 2012, 104, 650-658.	1.9	47
66	Resistance to Pyraclostrobin and Boscalid in <i>Botrytis cinerea</i> Isolates from Strawberry Fields in the Carolinas. Plant Disease, 2012, 96, 1198-1203.	1.4	132
67	Frequent Gain and Loss of Introns in Fungal Cytochrome b Genes. PLoS ONE, 2012, 7, e49096.	2.5	33
68	Influence of storage approaches on instability of propiconazole resistance in <i>Monilinia fructicola</i> . Pest Management Science, 2012, 68, 1003-1009.	3.4	28
69	Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genetics and Biology, 2011, 48, 113-123.	2.1	120
70	Monilinia Species Causing Brown Rot of Peach in China. PLoS ONE, 2011, 6, e24990.	2.5	108
71	Selection of a Suitable Medium to Determine Sensitivity of Monilinia fructicola Mycelium to SDHI Fungicides. Journal of Phytopathology, 2011, 159, 616-620.	1.0	23
72	Generation and Characterization of Transgenic Plum Lines Expressing gafp-1 with the bul409 Promoter. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 975-980.	1.0	3

#	Article	IF	CITATIONS
73	An intron in the cytochrome b gene of Monilinia fructicola mitigates the risk of resistance development to Qol fungicides. Pest Management Science, 2010, 66, 1308-1315.	3.4	37
74	Natural infection of an herbaceous host byArmillaria: a case study onHemerocallisâ€. Canadian Journal of Plant Pathology, 2010, 32, 351-360.	1.4	3
75	The Gastrodia Antifungal Protein (GAFP-1) and Its Transcript Are Absent from Scions of Chimeric-grafted Plum. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 188-192.	1.0	9
76	Validation of the Lipbalm Tube Assay for Evaluation of Fungicide Sensitivity in Field Isolates of $\langle i \rangle$ Monilinia fructicola $\langle i \rangle$. Plant Health Progress, 2009, 10, .	1.4	6
77	A New Selective Medium for the Recovery and Enumeration of <i>Monilinia fructicola, M. fructigena</i> , and <i>M. laxa</i> from Stone Fruits. Phytopathology, 2009, 99, 1199-1208.	2.2	14
78	Host Status of Three Transgenic Plum Lines to Mesocriconema xenoplax. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1932-1935.	1.0	3
79	Adaptation to Fungicides in <i>Monilinia fructicola</i> Isolates with Different Fungicide Resistance Phenotypes. Phytopathology, 2008, 98, 230-238.	2.2	51
80	Occurrence and Detection of the DMI Resistance-Associated Genetic Element â€ [™] Monaâ€ [™] in <i>Monilinia fructicola</i> . Plant Disease, 2008, 92, 1099-1103.	1.4	64
81	The Cytochrome P450 Lanosterol 14α-Demethylase Gene Is a Demethylation Inhibitor Fungicide Resistance Determinant in <i>Monilinia fructicola</i> Field Isolates from Georgia. Applied and Environmental Microbiology, 2008, 74, 359-366.	3.1	128
82	Generation and Characterization of Transgenic Plum Lines Expressing the Gastrodia Antifungal Protein. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 1514-1521.	1.0	19
83	Differential effect of triazoles on mycelial growth and disease measurements of Monilinia fructicola isolates with reduced sensitivity to DMI fungicides. Crop Protection, 2007, 26, 753-759.	2.1	54
84	Identifying and Characterizing Summer Diseases on †Babygold' Peach in South Carolina. Plant Health Progress, 2006, 7, 30.	1.4	8
85	Gastrodia anti-fungal protein from the orchid Gastrodia elata confers disease resistance to root pathogens in transgenic tobacco. Planta, 2006, 224, 1373-1383.	3.2	33
86	Use of a Muscodor albus pad delivery system for the management of brown rot of peach in shipping cartons. Postharvest Biology and Technology, 2006, 42, 121-123.	6.0	38
87	(92) Preplant Practices to Manage Armillaria Root Rot Disease and Other Soil Pathogens on a Commercial Peach Replant Site. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 1028D-1029.	1.0	0
88	Identification and characterization of Armillaria tabescens from the southeastern United States. Mycological Research, 2005, 109, 1208-1222.	2.5	34
89	(311) Armillaria Root Rot of Peach: A Multipronged Approach. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1026B-1026.	1.0	0
90	Heterologous expression of the P450 sterol 14α-demethylase gene from Monilinia fructicola reduces sensitivity to some but not all DMI fungicides. Pesticide Biochemistry and Physiology, 2004, 78, 31-38.	3.6	13

#	Article	IF	CITATION
91	Comparison of Reduced-Application and Sulfur-Based Fungicide Programs on Scab Intensity, Fruit Quality, and Cost of Disease Control on Peach. Plant Disease, 2004, 88, 162-166.	1.4	17
92	Reduced Sensitivity in Monilinia fructicola to Propiconazole in Georgia and Implications for Disease Management. Plant Disease, 2004, 88, 1000-1004.	1.4	81
93	Cloning and expression analysis of the ATP-binding cassette transporter geneMFABC1 and the alternative oxidase geneMfAOX1 fromMonilinia fructicola. Pest Management Science, 2003, 59, 1143-1151.	3.4	22
94	Development of Spontaneous Hygromycin B Resistance in Monilinia fructicola and Its Impact on Growth Rate, Morphology, Susceptibility to Demethylation Inhibitor Fungicides, and Sporulation. Phytopathology, 2003, 93, 1354-1359.	2.2	8
95	The 14α-Demethylasse(CYP51A1) Gene is Overexpressed in Venturia inaequalis Strains Resistant to Myclobutanil. Phytopathology, 2001, 91, 102-110.	2.2	190
96	Correlating light absorbance parameters in peach skin with susceptibility to streaking and association with rainwater components. PhytoFrontiers, 0, , .	1.6	0