
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7009234/publications.pdf Version: 2024-02-01

RADRADA D ROVAN

#	Article	IF	CITATIONS
1	Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 1996, 17, 137-146.	11.4	1,194
2	The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 2011, 32, 3395-3403.	11.4	709
3	Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials, 1998, 19, 2219-2232.	11.4	638
4	A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomaterialia, 2014, 10, 2907-2918.	8.3	607
5	Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomaterialia, 2016, 31, 425-434.	8.3	471
6	Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials, 2007, 28, 2821-2829.	11.4	414
7	A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomaterialia, 2014, 10, 2894-2906.	8.3	356
8	Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants. Acta Biomaterialia, 2014, 10, 3363-3371.	8.3	344
9	Ability of Commercial Demineralized Freezeâ€Dried Bone Allograft to Induce New Bone Formation. Journal of Periodontology, 1996, 67, 918-926.	3.4	291
10	The Role of Implant Surface Characteristics in the Healing of Bone. Critical Reviews in Oral Biology and Medicine, 1996, 7, 329-345.	4.4	278
11	Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage. Biomaterials, 2010, 31, 2728-2735.	11.4	265
12	Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. , 2003, 6, 22-27.		257
13	The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta Biomaterialia, 2013, 9, 6268-6277.	8.3	252
14	Osteoblast-Mediated Mineral Deposition in Culture is Dependent on Surface Microtopography. Calcified Tissue International, 2002, 71, 519-529.	3.1	245
15	Ability of Commercial Demineralized Freezeâ€Dried Bone Allograft to Induce New Bone Formation Is Dependent on Donor Age But Not Gender. Journal of Periodontology, 1998, 69, 470-478.	3.4	219
16	Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 544-557.	3.4	218
17	Osteoblast-like cells are sensitive to submicron-scale surface structure. Clinical Oral Implants Research, 2006, 17, 258-264.	4.5	217
18	Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication, 2014, 6, 045007.	7.1	197

#	Article	IF	CITATIONS
19	Regulation of angiogenesis during osseointegration by titanium surface microstructure and energy. Biomaterials, 2010, 31, 4909-4917.	11.4	188
20	Differential expression of phenotype by resting zone and growth region costochondral chondrocytes in vitro. Bone, 1988, 9, 185-194.	2.9	186
21	Porcine Fetal Enamel Matrix Derivative Stimulates Proliferation But Not Differentiation of Preâ€Osteoblastic 2T9 Cells, Inhibits Proliferation and Stimulates Differentiation of Osteoblastâ€Like MC63 Cells, and Increases Proliferation and Differentiation of Normal Human Osteoblast NHOst Cells, Iournal of Periodontology, 2000, 71, 1287-1296.	3.4	180
22	Effects of combining transforming growth factor beta and 1,25-dihydroxyvitamin D3 on differentiation of a human osteosarcoma (MG-63) Journal of Biological Chemistry, 1992, 267, 8943-8949.	3.4	175
23	Mechanisms Involved in Osteoblast Response to Implant Surface Morphology. Annual Review of Materials Research, 2001, 31, 357-371.	9.3	171
24	Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomaterialia, 2012, 8, 1966-1975.	8.3	169
25	Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine Journal, 2012, 12, 265-272.	1.3	168
26	Advances in Porous Scaffold Design for Bone and Cartilage Tissue Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2019, 25, 14-29.	4.8	166
27	Phagocytosis of wear debris by osteoblasts affects differentiation and local factor production in a manner dependent on particle composition. Biomaterials, 2000, 21, 551-561.	11.4	165
28	Porcine Fetal Enamel Matrix Derivative Enhances Bone Formation Induced by Demineralized Freeze Dried Bone Allograft In Vivo. Journal of Periodontology, 2000, 71, 1278-1286.	3.4	162
29	Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli. PLoS ONE, 2017, 12, e0170312.	2.5	157
30	Direct Effects of 1,25-Dihydroxyvitamin D ₃ and 24,25-Dihydroxyvitamin D3 on Growth Zone and Resting Zone Chondrocyte Membrane Alkaline Phosphatase and Phospholipase-A2 Specific Activities*. Endocrinology, 1988, 123, 2878-2884.	2.8	150
31	T <scp>he </scp> U <scp>se of </scp> E <scp>namel </scp> M <scp>atrix </scp> D <scp>erivative in the </scp> T <scp>reatment of </scp> P <scp>eriodontal </scp> D <scp>efects</scp> : <scp>a </scp> L <scp>iterature </scp> R <scp>eview and </scp> M <scp>eta</scp> - <scp>analysis</scp> . Critical Reviews in Oral Biology and Medicine, 2004, 15, 382-402.	4.4	147
32	Ability of Deproteinized Cancellous Bovine Bone to Induce New Bone Formation. Journal of Periodontology, 2000, 71, 1258-1269.	3.4	146
33	The Effects of Vitamin D Metabolites on the Plasma and Matrix Vesicle Membranes of Growth and Resting Cartilage Cells <i>in Vitro</i> *. Endocrinology, 1988, 122, 2851-2860.	2.8	142
34	Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium–aluminum–vanadium alloy surfaces. Biomaterials, 2012, 33, 8986-8994.	11.4	141
35	Effect of Micrometer-Scale Roughness of the Surface of Ti6Al4V Pedicle Screws in Vitro and in Vivo. Journal of Bone and Joint Surgery - Series A, 2008, 90, 2485-2498.	3.0	133
36	Integrin α5 controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. Journal of Biomedical Materials Research - Part A, 2007, 80A, 700-710.	4.0	130

#	Article	IF	CITATIONS
37	Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2. Biomaterials, 1999, 20, 2305-2310.	11.4	128
38	Mediation of osteogenic differentiation of human mesenchymal stem cells on titanium surfaces by a Wnt-integrin feedback loop. Biomaterials, 2011, 32, 6399-6411.	11.4	128
39	Implant Materials Generate Different Peri-implant Inflammatory Factors. Spine, 2015, 40, 399-404.	2.0	127
40	Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on microstructured titanium surfaces. Biomaterials, 2009, 30, 3390-3396.	11.4	123
41	Ceramic and PMMA particles differentially affect osteoblast phenotype. Biomaterials, 2002, 23, 1855-1863.	11.4	118
42	Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine Journal, 2013, 13, 1563-1570.	1.3	112
43	Roughness and Hydrophilicity as Osteogenic Biomimetic Surface Properties. Tissue Engineering - Part A, 2017, 23, 1479-1489.	3.1	107
44	Electrical Implications of Corrosion for Osseointegration of Titanium Implants. Journal of Dental Research, 2011, 90, 1389-1397.	5.2	102
45	Matrix vesicles are enriched in metalloproteinases that degrade proteoglycans. Calcified Tissue International, 1992, 50, 342-349.	3.1	101
46	Local factor production by MG63 osteoblast-like cells in response to surface roughness and 1,25-(OH)2D3 is mediated via protein kinase C- and protein kinase A-dependent pathways. Biomaterials, 2001, 22, 731-741.	11.4	99
47	The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials, 2012, 33, 7386-7393.	11.4	99
48	Nongenomic regulation of protein kinase C isoforms by the vitamin D metabolites 1α,25-(OH)2D3 and 24R,25-(OH)2D3. Journal of Cellular Physiology, 1996, 167, 380-393.	4.1	95
49	Addition of Human Recombinant Bone Morphogenetic Proteinâ€2 to Inactive Commercial Human Demineralized Freezeâ€Dried Bone Allograft Makes An Effective Composite Bone Inductive Implant Material. Journal of Periodontology, 1998, 69, 1337-1345.	3.4	91
50	Membrane Estrogen Signaling Enhances Tumorigenesis and Metastatic Potential of Breast Cancer Cells via Estrogen Receptor-α36 (ERα36). Journal of Biological Chemistry, 2012, 287, 7169-7181.	3.4	89
51	Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces. Biomaterials, 2015, 51, 69-79.	11.4	86
52	Protein-disulfide Isomerase-associated 3 (Pdia3) Mediates the Membrane Response to 1,25-Dihydroxyvitamin D3 in Osteoblasts. Journal of Biological Chemistry, 2010, 285, 37041-37050.	3.4	85
53	Activation of Latent Transforming Growth Factor $\hat{1}^21$ by Stromelysin 1 in Extracts of Growth Plate Chondrocyte-Derived Matrix Vesicles. Journal of Bone and Mineral Research, 2001, 16, 1281-1290.	2.8	84
54	Plasma membrane Pdia3 and VDR interact to elicit rapid responses to 1α,25(OH)2D3. Cellular Signalling, 2013, 25, 2362-2373.	3.6	83

#	Article	IF	CITATIONS
55	Platelet-Derived Growth Factor Inhibits Demineralized Bone Matrix-Induced Intramuscular Cartilage and Bone Formation. Journal of Bone and Joint Surgery - Series A, 2005, 87, 2052-2064.	3.0	82
56	Rapid steroid hormone actions via membrane receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2289-2298.	4.1	80
57	17?-estradiol-BSA conjugates and 17?-estradiol regulate growth plate chondrocytes by common membrane associated mechanisms involving PKC dependent and independent signal transduction. Journal of Cellular Biochemistry, 2001, 81, 413-429.	2.6	78
58	Regulation of arachidonic acid turnover by 1,25-(OH)2D3 and 24,25-(OH)2D3 in growth zone and resting zone chondrocyte cultures. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1027, 278-286.	2.6	76
59	Differential regulation of prostaglandin E2 synthesis and phospholipase A2 activity by 1,25-(OH)2D3 in three osteoblast-like cell lines (MC-3T3-E1, ROS 17/2.8, and MG-63). Bone, 1992, 13, 51-58.	2.9	76
60	Membrane actions of vitamin D metabolites 1?,25(OH)2D3 and 24R,25(OH)2D3 are retained in growth plate cartilage cells from vitamin D receptor knockout mice. Journal of Cellular Biochemistry, 2003, 90, 1207-1223.	2.6	76
61	Nongenomic regulation of chondrocyte membrane fluidity by 1,25-(OH)2D3 and 24,25-(OH)2D3 is dependent on cell maturation. Bone, 1993, 14, 609-617.	2.9	74
62	Role of lipids in calcification of cartilage. The Anatomical Record, 1989, 224, 211-219.	1.8	72
63	Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. Journal of Bone and Mineral Research, 2012, 27, 1773-1783.	2.8	71
64	Osteogenic response of human MSCs and osteoblasts to hydrophilic and hydrophobic nanostructured titanium implant surfaces. Journal of Biomedical Materials Research - Part A, 2016, 104, 3137-3148.	4.0	71
65	D <scp>ifferential</scp> R <scp>egulation of</scp> G <scp>rowth</scp> P <scp>late</scp> C <scp>hondrocytes by</scp> 11±,25-(OH) ₂ D ₃ <scp>and</scp> 24R,25-(OH) ₂ D ₃ Critical Reviews in Oral Biology and Medicine, 2002, 13, 143-154.	<scp>nvol</scp>	ve ⁷⁰ /scp>C<
66	Caveolin-1 Knockout Mice Have Increased Bone Size and Stiffness. Journal of Bone and Mineral Research, 2007, 22, 1408-1418.	2.8	70
67	Dental implant surface chemistry and energy alter macrophage activation <i>inÂvitro</i> . Clinical Oral Implants Research, 2017, 28, 414-423.	4.5	70
68	Integrin β1 silencing in osteoblasts alters substrate-dependent responses to 1,25-dihydroxy vitamin D3. Biomaterials, 2006, 27, 3716-3725.	11.4	69
69	Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces. Acta Biomaterialia, 2011, 7, 2740-2750.	8.3	68
70	Regulation of osteoclasts by osteoblast lineage cells depends on titanium implant surface properties. Acta Biomaterialia, 2018, 68, 296-307.	8.3	68
71	Regulation of prostaglandin E2 production by vitamin D metabolites in growth zone and resting zone chondrocyte cultures is dependent on cell maturation. Bone, 1992, 13, 395-401.	2.9	67
72	Gender dependent effects of testosterone and 17β-estradiol on bone growth and modelling in young mice. Bone and Mineral, 1994, 24, 43-58.	1.9	67

BARBARA D BOYAN

#	Article	IF	CITATIONS
73	Evidence for distinct membrane receptors for 1α,25-(OH)2D3 and 24R,25-(OH)2D3 in osteoblasts. Steroids, 2002, 67, 235-246.	1.8	67
74	Osteoblast Lineage Cells Can Discriminate Microscale Topographic Features on Titanium–Aluminum–Vanadium Surfaces. Annals of Biomedical Engineering, 2014, 42, 2551-2561.	2.5	67
75	24,25-(OH)2D3 regulates cartilage and bone via autocrine and endocrine mechanisms. Steroids, 2001, 66, 363-374.	1.8	65
76	A 2-Year Follow-Up of Root Coverage Using Subpedicle Acellular Dermal Matrix Allografts and Subepithelial Connective Tissue Autografts. Journal of Periodontology, 2005, 76, 1323-1328.	3.4	65
77	Vitamin D Regulation of Metal loproteinase Activity in Matrix Vesicles. Connective Tissue Research, 1996, 35, 331-336.	2.3	64
78	Human articular chondrocytes exhibit sexual dimorphism in their responses to 17β-estradiol. Osteoarthritis and Cartilage, 2005, 13, 330-337.	1.3	64
79	Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation. Advances in Dental Research, 2016, 28, 10-17.	3.6	64
80	Controlled release of rat adipose-derived stem cells from alginate microbeads. Biomaterials, 2013, 34, 8172-8184.	11.4	63
81	Does Sex Matter in Musculoskeletal Health? <sbt aid="1021074">The Influence of Sex and Gender on Musculoskeletal Health<cross-ref refid="fn1" type="fn">*</cross-ref></sbt> . Journal of Bone and Joint Surgery - Series A, 2005, 87, 1631.	3.0	61
82	The roles of Wnt signaling modulators Dickkopf-1 (Dkk1) and Dickkopf-2 (Dkk2) and cell maturation state in osteogenesis on microstructured titanium surfaces. Biomaterials, 2010, 31, 2015-2024.	11.4	61
83	Mechanical stiffness as an improved single-cell indicator of osteoblastic human mesenchymal stem cell differentiation. Journal of Biomechanics, 2014, 47, 2197-2204.	2.1	61
84	Effect of 1,25(OH)2D3 and 24,25(OH)2D3 on calcium ion fluxes in costochondral chondrocyte cultures. Calcified Tissue International, 1990, 47, 230-236.	3.1	60
85	Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential. Acta Biomaterialia, 2012, 8, 878-885.	8.3	59
86	Novel hydrophilic nanostructured microtexture on direct metal laser sintered Ti-6Al-4V surfaces enhances osteoblast response <i>in vitro</i> and osseointegration in a rabbit model. Journal of Biomedical Materials Research - Part A, 2016, 104, 2086-2098.	4.0	59
87	1,25-(OH)2D3 and 24,25-(OH)2D3 regulation of arachidonic acid turnover in chondrocyte cultures is cell maturation-specific and may involve direct effects on phospholipase A2. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1136, 45-51.	4.1	57
88	Nongenomic regulation of extracellular matrix events by vitamin D metabolites. Journal of Cellular Biochemistry, 1994, 56, 331-339.	2.6	55
89	Chondrocyte cultures express matrix metalloproteinase mRNA and immunoreactive protein; stromelysin-1 and 72 kDa gelatinase are localized in extracellular matrix vesicles. Journal of Cellular Biochemistry, 1996, 61, 375-391.	2.6	53
90	17β-Estradiol regulation of protein kinase C activity in chondrocytes is sex-dependent and involves nongenomic mechanisms. , 1998, 176, 435-444.		53

#	Article	IF	CITATIONS
91	The membrane effects of 17β-estradiol on chondrocyte phenotypic expression are mediated by activation of protein kinase C through phospholipase C and G-proteins. Journal of Steroid Biochemistry and Molecular Biology, 2000, 73, 211-224.	2.5	52
92	Osteoblast Proliferation and Differentiation on Dentin Slices Are Modulated by Pretreatment of the Surface With Tetracycline or Osteoclasts. Journal of Periodontology, 2000, 71, 586-597.	3.4	52
93	Regulating in vivo calcification of alginate microbeads. Biomaterials, 2010, 31, 4926-4934.	11.4	52
94	Alginate Microencapsulation Technology for the Percutaneous Delivery of Adipose-Derived Stem Cells. Annals of Plastic Surgery, 2010, 65, 497-503.	0.9	51
95	Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration. Stem Cell Research and Therapy, 2012, 3, 35.	5.5	51
96	Membrane-mediated actions of 1,25-dihydroxy vitamin D3: A review of the roles of phospholipase A2 activating protein and Ca2+/calmodulin-dependent protein kinase II. Journal of Steroid Biochemistry and Molecular Biology, 2015, 147, 81-84.	2.5	51
97	The effect of 24R,25-(OH)2D3 on protein kinase C activity in chondrocytes is mediated by phospholipase D whereas the effect of 11±,25-(OH)2D3 is mediated by phospholipase C. Steroids, 2001, 66, 683-694.	1.8	48
98	Selective enrichment of microRNAs in extracellular matrix vesicles produced by growth plate chondrocytes. Bone, 2016, 88, 47-55.	2.9	48
99	Effect of 17β-estradiol on chondrocyte membrane fluidity and phospholipid metabolism is membrane-specific, sex-specific, and cell maturation-dependent. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1282, 1-10.	2.6	46
100	Plasma membrane requirements for 1α,25(OH)2D3 dependent PKC signaling in chondrocytes and osteoblasts. Steroids, 2006, 71, 286-290.	1.8	46
101	The Titanium-Bone Cell Interface In Vitro: The Role of the Surface in Promoting Osteointegration. Engineering Materials, 2001, , 561-585.	0.6	46
102	Vitamin D3 metabolites regulate LTBP1 and latent TGF-?1 expression and latent TGF-?1 incorporation in the extracellular matrix of chondrocytes. Journal of Cellular Biochemistry, 1999, 72, 151-165.	2.6	45
103	Rapidly polymerizing injectable click hydrogel therapy to delay bone growth in a murine re-synostosis model. Biomaterials, 2014, 35, 9698-9708.	11.4	45
104	Changes in extracellular matrix vesicles during healing of rat tibial bone: A morphometric and biochemical study. Bone, 1989, 10, 53-60.	2.9	44
105	BMP2 induces osteoblast apoptosis in a maturation state and nogginâ€dependent manner. Journal of Cellular Biochemistry, 2012, 113, 3236-3245.	2.6	44
106	Addressing the gaps: sex differences in osteoarthritis of the knee. Biology of Sex Differences, 2013, 4, 4.	4.1	44
107	Performance of laser sintered Ti–6Al–4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur. Biomedical Materials (Bristol), 2017, 12, 025021.	3.3	44
108	1α,25(OH)2D3 causes a rapid increase in phosphatidylinositol-specific PLC-β activity via phospholipase A2-dependent production of lysophospholipid. Steroids, 2003, 68, 423-437.	1.8	43

#	Article	IF	CITATIONS
109	1α,25(OH)2D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60 activated matrix vesicle metalloproteinases. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 467-472.	2.5	43
110	Lysophosphatidic acid signaling promotes proliferation, differentiation, and cell survival in rat growth plate chondrocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 836-846.	4.1	43
111	Role of ERα36 in membrane-associated signaling by estrogen. Steroids, 2014, 81, 74-80.	1.8	42
112	1α,25(OH)2D3 Regulates Chondrocyte Matrix Vesicle Protein Kinase C (PKC) Directly via G-protein-dependent Mechanisms and Indirectly via Incorporation of PKC during Matrix Vesicle Biogenesis. Journal of Biological Chemistry, 2002, 277, 11828-11837.	3.4	40
113	Regulation of Growth Plate Chondrocytes by 1,25-Dihydroxyvitamin D3 Requires Caveolae and Caveolin-1. Journal of Bone and Mineral Research, 2006, 21, 1637-1647.	2.8	40
114	The dependence of MG63 osteoblast responses to (meth)acrylate-based networks on chemical structure and stiffness. Biomaterials, 2010, 31, 6131-6141.	11.4	40
115	Disruption of Pdia3 gene results in bone abnormality and affects 1α,25-dihydroxy-vitamin D3-induced rapid activation of PKC. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 257-260.	2.5	40
116	Enhancement of Surface Wettability via the Modification of Microtextured Titanium Implant Surfaces with Polyelectrolytes. Langmuir, 2011, 27, 5976-5985.	3.5	40
117	Mechanism of Pdia3-dependent 1α,25-dihydroxy vitamin D3 signaling in musculoskeletal cells. Steroids, 2012, 77, 892-896.	1.8	40
118	Galectinâ€1 promotes an M2 macrophage response to polydioxanone scaffolds. Journal of Biomedical Materials Research - Part A, 2017, 105, 2562-2571.	4.0	40
119	Characterization of prostaglandin E2 receptors and their role in 24,25-(OH)2D3-mediated effects on resting zone chondrocytes. Journal of Cellular Physiology, 2000, 182, 196-208.	4.1	39
120	Resveratrol effect on osteogenic differentiation of rat and human adipose derived stem cells in a 3-D culture environment. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 112-122.	3.1	39
121	Role of α2β1 integrins in mediating cell shape on microtextured titanium surfaces. Journal of Biomedical Materials Research - Part A, 2015, 103, 564-573.	4.0	38
122	Arachidonic acid is an autocoid mediator of the differential action of 1,25-(OH)2D3 and 24,25-(OH)2D3 on growth plate chondrocytes. Journal of Cellular Physiology, 1998, 176, 516-524.	4.1	37
123	Laser Sintered Porous Ti–6Al–4V Implants Stimulate Vertical Bone Growth. Annals of Biomedical Engineering, 2017, 45, 2025-2035.	2.5	37
124	Change in surface roughness by dynamic shape-memory acrylate networks enhances osteoblast differentiation. Biomaterials, 2016, 110, 34-44.	11.4	36
125	Coverage of Previously Carious Roots Is as Predictable a Procedure as Coverage of Intact Roots. Journal of Periodontology, 2002, 73, 1419-1426.	3.4	35
126	Sex-specific regulation of growth plate chondrocytes by estrogen is via multiple MAP kinase signaling pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 381-392.	4.1	35

#	Article	IF	CITATIONS
127	Microstructured titanium regulates interleukin production by osteoblasts, an effect modulated by exogenous BMP-2. Acta Biomaterialia, 2013, 9, 5821-5829.	8.3	35
128	Inhibition of cyclooxygenase by indomethacin modulates osteoblast response to titanium surface roughness in a time-dependent manner. Clinical Oral Implants Research, 2001, 12, 52-61.	4.5	34
129	Osteoprotegerin (OPG) Production by Cells in the Osteoblast Lineage is Regulated by Pulsed Electromagnetic Fields in Cultures Grown on Calcium Phosphate Substrates. Annals of Biomedical Engineering, 2009, 37, 437-444.	2.5	34
130	Phospholipase A2 activating protein is required for 1α,25-dihydroxyvitamin D3 dependent rapid activation of protein kinase C via Pdia3. Journal of Steroid Biochemistry and Molecular Biology, 2012, 132, 48-56.	2.5	34
131	Estrogen receptor-alpha 36 mediates the anti-apoptotic effect of estradiol in triple negative breast cancer cells via a membrane-associated mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2796-2806.	4.1	34
132	Coordinated regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by endogenous bone morphogenetic proteins. Bone, 2015, 73, 208-216.	2.9	34
133	Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta Biomaterialia, 2016, 43, 139-149.	8.3	34
134	Comparable responses of osteoblast lineage cells to microstructured hydrophilic titanium–zirconium and microstructured hydrophilic titanium. Clinical Oral Implants Research, 2017, 28, e51-e59.	4.5	34
135	24R,25-(OH)2D3 mediates its membrane receptor-dependent effects on protein kinase C and alkaline phosphatase via phospholipase A2 and cyclooxygenase-1 but not cyclooxygenase-2 in growth plate chondrocytes. Journal of Cellular Physiology, 2000, 182, 390-401.	4.1	33
136	Regulation of phospholipase D (PLD) in growth plate chondrocytes by 24R,25-(OH)2D3 is dependent on cell maturation state (resting zone cells) and is specific to the PLD2 isoform. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1499, 209-221.	4.1	33
137	Use of polyelectrolyte thin films to modulate Osteoblast response to microstructured titanium surfaces. Biomaterials, 2012, 33, 5267-5277.	11.4	33
138	Decellularized Muscle Supports New Muscle Fibers and Improves Function Following Volumetric Injury. Tissue Engineering - Part A, 2018, 24, 1228-1241.	3.1	33
139	Phospholipase A ₂ activating protein (PLAA) is required for 1α,25(OH) ₂ D ₃ signaling in growth plate chondrocytes. Journal of Cellular Physiology, 2005, 203, 54-70.	4.1	32
140	Matrix Vesicles as a Marker of Endochondral Ossification. Connective Tissue Research, 1990, 24, 67-75.	2.3	31
141	Effect of Porcine Fetal Enamel Matrix Derivative on Chondrocyte Proliferation, Differentiation, and Local Factor Production Is Dependent on Cell Maturation State. Cells Tissues Organs, 2002, 171, 117-127.	2.3	31
142	Osteoinductive Ability of Human Allograft Formulations. Journal of Periodontology, 2006, 77, 1555-1563.	3.4	31
143	Osteoinductivity of demineralized bone matrix in immunocompromised mice and rats is decreased by ovariectomy and restored by estrogen replacement. Bone, 2007, 40, 111-121.	2.9	31
144	24R,25-Dihydroxyvitamin D3 [24R,25(OH)2D3] controls growth plate development by inhibiting apoptosis in the reserve zone and stimulating response to 1α,25(OH)2D3 in hypertrophic cells. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 212-216.	2.5	31

#	Article	IF	CITATIONS
145	Prostaglandins mediate the effects of 1,25-(OH)2D3 and 24,25-(OH)2D3 on growth plate chondrocytes in a metabolite-specific and cell maturation-dependent manner. Bone, 1999, 24, 475-484.	2.9	30
146	New insights on membrane mediated effects of 1α,25-dihydroxy vitamin D3 signaling in the musculoskeletal system. Steroids, 2014, 81, 81-87.	1.8	30
147	Signaling components of the 1α,25(OH)2D3-dependent Pdia3 receptor complex are required for Wnt5a calcium-dependent signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2365-2375.	4.1	30
148	Spag17 Deficiency Results in Skeletal Malformations and Bone Abnormalities. PLoS ONE, 2015, 10, e0125936.	2.5	30
149	24R,25-Dihydroxyvitamin D3 Protects against Articular Cartilage Damage following Anterior Cruciate Ligament Transection in Male Rats. PLoS ONE, 2016, 11, e0161782.	2.5	30
150	Characterization of osteoarthritic human knees indicates potential sex differences. Biology of Sex Differences, 2016, 7, 27.	4.1	30
151	Inhibition of 1,25-(OH)2D3- and 24,25-(OH)2D3-dependent stimulation of alkaline phosphatase activity by A23187 suggests a role for calcium in the mechanism of vitamin D regulation of chondrocyte cultures. Journal of Bone and Mineral Research, 1991, 6, 709-718.	2.8	29
152	A review of 1α,25(OH)2D3 dependent Pdia3 receptor complex components in Wnt5a non-canonical pathway signaling. Journal of Steroid Biochemistry and Molecular Biology, 2015, 152, 84-88.	2.5	29
153	Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro. Calcified Tissue International, 2016, 99, 625-637.	3.1	29
154	Matrix vesicles contain metalloproteinases that degrade proteoglycans. Bone and Mineral, 1992, 17, 172-176.	1.9	28
155	Studies of matrix vesicle-induced mineralization in a gelatin gel. Bone and Mineral, 1992, 17, 257-262.	1.9	28
156	Rapid and long-term effects of PTH(1-34) on growth plate chondrocytes are mediated through two different pathways in a cell-maturation-dependent manner. Bone, 1997, 21, 249-259.	2.9	28
157	Electrical polarization of titanium surfaces for the enhancement of osteoblast differentiation. Bioelectromagnetics, 2013, 34, 599-612.	1.6	28
158	Membrane actions of 1α,25(OH)2D3 are mediated by Ca2+/calmodulin-dependent protein kinase II in bone and cartilage cells. Journal of Steroid Biochemistry and Molecular Biology, 2015, 145, 65-74.	2.5	28
159	24R,25-Dihydroxyvitamin D3, lysophosphatidic acid, and p53: A signaling axis in the inhibition of phosphate-induced chondrocyte apoptosis. Journal of Steroid Biochemistry and Molecular Biology, 2010, 122, 264-271.	2.5	27
160	Differentiation of human mesenchymal stem cell spheroids under microgravity conditions. Cell Regeneration, 2012, 1, 1:2.	2.6	27
161	Tailoring Adipose Stem Cell Trophic Factor Production with Differentiation Medium Components to Regenerate Chondral Defects. Tissue Engineering - Part A, 2013, 19, 1451-1464.	3.1	27
162	Osteoblast response to nanocrystalline calcium hydroxyapatite depends on carbonate content. Journal of Biomedical Materials Research - Part A, 2014, 102, 3237-3242.	4.0	27

#	Article	IF	CITATIONS
163	MicroRNA Contents in Matrix Vesicles Produced by Growth Plate Chondrocytes are Cell Maturation Dependent. Scientific Reports, 2018, 8, 3609.	3.3	27
164	Osteoblasts grown on microroughened titanium surfaces regulate angiogenic growth factor production through specific integrin receptors. Acta Biomaterialia, 2019, 97, 578-586.	8.3	27
165	Regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by semaphorin 3A. Bone, 2020, 134, 115260.	2.9	27
166	Preferential accumulation in vivo of 24R,25-dihydroxyvitamin D3 in growth plate cartilage of rats. Endocrine, 1996, 5, 147-155.	2.2	26
167	Effects of 1?,25-(OH)2D3 on rat growth zone chondrocytes are mediated via cyclooxygenase-1 and phospholipase A2. Journal of Cellular Biochemistry, 2001, 81, 32-45.	2.6	26
168	Role of integrin α ₂ β ₁ in mediating osteoblastic differentiation on threeâ€dimensional titanium scaffolds with submicronâ€scale texture. Journal of Biomedical Materials Research - Part A, 2015, 103, 1907-1918.	4.0	26
169	Mineralization of three-dimensional osteoblast cultures is enhanced by the interaction of 1 <i>α</i> ,25-dihydroxyvitamin D3 and BMP2 via two specific vitamin D receptors. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 40-51.	2.7	26
170	Enhanced Osteoblast Response to Porosity and Resolution of Additively Manufactured Ti-6Al-4V Constructs with Trabeculae-Inspired Porosity. 3D Printing and Additive Manufacturing, 2016, 3, 10-21.	2.9	26
171	Hybrid structural analogues of 1,25-(OH)2D3 regulate chondrocyte proliferation and proteoglycan production as well as protein kinase C through a nongenomic pathway. Journal of Cellular Biochemistry, 1997, 66, 457-470.	2.6	25
172	Lysophospholipid regulates release and activation of latent TGF-β1 from chondrocyte extracellular matrix. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1684, 18-28.	2.4	25
173	Regulation of protein kinase C by transforming growth factor β1 in rat costochondral chondrocyte cultures. Journal of Bone and Mineral Research, 1994, 9, 1477-1487.	2.8	25
174	Hyaluronic acid stimulates neovascularization during the regeneration of bone marrow after ablation. Journal of Biomedical Materials Research - Part A, 2011, 96A, 575-583.	4.0	25
175	17Beta-Estradiol Promotes Aggressive Laryngeal Cancer Through Membrane-Associated Estrogen Receptor-Alpha 36. Hormones and Cancer, 2014, 5, 22-32.	4.9	25
176	Integrin-α7 signaling regulates connexin 43, M-cadherin, and myoblast fusion. American Journal of Physiology - Cell Physiology, 2019, 316, C876-C887.	4.6	25
177	VEGFâ€A regulates angiogenesis during osseointegration of Ti implants via paracrine/autocrine regulation of osteoblast response to hierarchical microstructure of the surface. Journal of Biomedical Materials Research - Part A, 2019, 107, 423-433.	4.0	25
178	Regulation of Matrix Vesicle Metabolism by Vitamin D Metabolites. Connective Tissue Research, 1989, 22, 629-642.	2.3	24
179	Phenotypic Changes of Rabbit Mandibular Condylar Cartilage Cells in Culture. Journal of Dental Research, 1990, 69, 1753-1758.	5.2	24
180	Sexual dimorphism of growth plate prehypertrophic and hypertrophic chondrocytes in response to testosterone requires metabolism to dihydrotestosterone (DHT) by steroid 5â€alpha reductase type 1. Journal of Cellular Biochemistry, 2005, 95, 108-119.	2.6	24

#	Article	IF	CITATIONS
181	Sex dependent regulation of osteoblast response to implant surface properties by systemic hormones. Biology of Sex Differences, 2010, 1, 4.	4.1	24
182	Osteogenic Differentiation of Stem Cells Alters Vitamin D Receptor Expression. Stem Cells and Development, 2012, 21, 1726-1735.	2.1	24
183	Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds. Acta Biomaterialia, 2016, 39, 44-54.	8.3	24
184	Bone Morphogenetic Protein 2 Alters Osteogenesis and Anti-Inflammatory Profiles of Mesenchymal Stem Cells Induced by Microtextured Titanium <i>In Vitro</i> . Tissue Engineering - Part A, 2017, 23, 1132-1141.	3.1	24
185	Role of Wnt11 during Osteogenic Differentiation of Human Mesenchymal Stem Cells on Microstructured Titanium Surfaces. Scientific Reports, 2018, 8, 8588.	3.3	24
186	Tamoxifen elicits its anti-estrogen effects in growth plate chondrocytes by inhibiting protein kinase C. Journal of Steroid Biochemistry and Molecular Biology, 2002, 80, 401-410.	2.5	22
187	Effects of resveratrol on enrichment of adipose-derived stem cells and their differentiation to osteoblasts in two-and three-dimensional cultures. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, s34-s46.	2.7	22
188	A-ring analogues of 1,25-(OH)2D3 with low affinity for the vitamin D receptor modulate chondrocytes via membrane effects that are dependent on cell maturation. , 1997, 171, 357-367.		21
189	Osteosarcoma hybrids can preferentially target alkaline phosphatase activity to matrix vesicles: Evidence for independent membrane biogenesis. Journal of Bone and Mineral Research, 1995, 10, 1614-1624.	2.8	21
190	Titanium implant surface properties enhance osseointegration in ovariectomy induced osteoporotic rats without pharmacologic intervention. Clinical Oral Implants Research, 2020, 31, 374-387.	4.5	21
191	Surface microtopography regulates osteointegration: the role of implant surface microtopography in osteointegration. The Alpha Omegan, 2005, 98, 9-19.	0.1	21
192	Membrane mediated signaling mechanisms are used differentially by metabolites of vitamin D3 in musculoskeletal cells. Steroids, 2002, 67, 421-427.	1.8	20
193	Superposition of nanostructures on microrough titanium–aluminum–vanadium alloy surfaces results in an altered integrin expression profile in osteoblasts. Connective Tissue Research, 2014, 55, 164-168.	2.3	20
194	Osteoblast maturation on microtextured titanium involves paracrine regulation of bone morphogenetic protein signaling. Journal of Biomedical Materials Research - Part A, 2015, 103, 1721-1731.	4.0	20
195	Human osteoblasts exhibit sexual dimorphism in their response to estrogen on microstructured titanium surfaces. Biology of Sex Differences, 2018, 9, 30.	4.1	20
196	Steroid Hormone Action in Musculoskeletal Cells Involves Membrane Receptor and Nuclear Receptor Mechanisms. Connective Tissue Research, 2003, 44, 130-135.	2.3	19
197	Development of a cell delivery system using alginate microbeads for tissue regeneration. Journal of Materials Chemistry B, 2016, 4, 3515-3525.	5.8	19
198	Impaired Bone Formation in Pdia3 Deficient Mice. PLoS ONE, 2014, 9, e112708.	2.5	19

BARBARA D BOYAN

#	Article	IF	CITATIONS
199	Root Coverage and Pocket Reduction as Combined Surgical Procedures. Journal of Periodontology, 2001, 72, 1572-1579.	3.4	18
200	Formation of Tethers Linking the Epiphysis and Metaphysis Is Regulated by Vitamin D Receptor-Mediated Signaling. Calcified Tissue International, 2009, 85, 134-145.	3.1	18
201	Chaperone Properties of Pdia3 Participate in Rapid Membrane Actions of 1α,25-Dihydroxyvitamin D3. Molecular Endocrinology, 2013, 27, 1065-1077.	3.7	18
202	Sex-specific response of rat costochondral cartilage growth plate chondrocytes to 17β-estradiol involves differential regulation of plasma membrane associated estrogen receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1165-1172.	4.1	18
203	Accuracy of computerâ€guided implantation in a human cadaver model. Clinical Oral Implants Research, 2015, 26, 1143-1149.	4.5	18
204	Thrombin peptide (TP508) treatment of rat growth plate cartilage cells promotes proliferation and retention of the chondrocytic phenotype while blocking terminal endochondral differentiation. Journal of Cellular Physiology, 2005, 202, 336-343.	4.1	17
205	Growth-plate chondrocytes respond to 17β-estradiol with sex-specific increases in IP3 and intracellular calcium ion signalling via a capacitative entry mechanism. Steroids, 2005, 70, 775-786.	1.8	17
206	Surface modification of bulk titanium substrates for biomedical applications via lowâ€ŧemperature microwave hydrothermal oxidation. Journal of Biomedical Materials Research - Part A, 2018, 106, 782-796.	4.0	16
207	Beta-1 integrins mediate substrate dependent effects of 1α,25(OH)2D3 on osteoblasts. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 606-609.	2.5	15
208	Osteoblast response to fluid induced shear depends on substrate microarchitecture and varies with time. Journal of Biomedical Materials Research - Part A, 2007, 83A, 20-32.	4.0	15
209	Rapid membrane responses to dihydrotestosterone are sex dependent in growth plate chondrocytes. Journal of Steroid Biochemistry and Molecular Biology, 2012, 132, 15-23.	2.5	15
210	Inhibition of angiogenesis impairs bone healing in an <i>in vivo</i> murine rapid resynostosis model. Journal of Biomedical Materials Research - Part A, 2017, 105, 2742-2749.	4.0	15
211	Bisphosphonates inhibit surfaceâ€mediated osteogenesis. Journal of Biomedical Materials Research - Part A, 2020, 108, 1774-1786.	4.0	15
212	Regulation of inflammatory and catabolic responses to IL-1Î ² in rat articular chondrocytes by microRNAs miR-122 and miR-451. Osteoarthritis and Cartilage, 2021, 29, 113-123.	1.3	15
213	A Review of Biomimetic Topographies and Their Role in Promoting Bone Formation and Osseointegration: Implications for Clinical Use. Biomimetics, 2022, 7, 46.	3.3	15
214	Evidence that interleukin-1, but not interleukin-6, affects costochondral chondrocyte proliferation, differentiation, and matrix synthesis through an autocrine pathway. Journal of Bone and Mineral Research, 1996, 11, 1119-1129.	2.8	14
215	Microencapsulation of Stem Cells for Therapy. Methods in Molecular Biology, 2017, 1479, 251-259.	0.9	14
216	24R,25-Dihydroxyvitamin D3 regulates breast cancer cells in vitro and in vivo. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1498-1512.	2.4	14

#	Article	IF	CITATIONS
217	Ibandronate Treatment Before and After Implant Insertion Impairs Osseointegration in Aged Rats with Ovariectomy Induced Osteoporosis. JBMR Plus, 2019, 3, e10184.	2.7	14
218	The Role of Matrix-Bound Extracellular Vesicles in the Regulation of Endochondral Bone Formation. Cells, 2022, 11, 1619.	4.1	14
219	Treatment of Resting Zone Chondrocytes with Bone Morphogenetic Protein-2 Induces Maturation into a Phenotype Characteristic of Growth Zone Chondrocytes by Downregulating Responsiveness to 24,25(OH) ₂ D ₃ and Upregulating Responsiveness to 1.25-(OH) ₂ D ₃ . Endocrine, 1998, 9, 273-280.	2.2	13
220	Regulation of Osteoblast Differentiation by Acid-Etched and/or Grit-Blasted Titanium Substrate Topography Is Enhanced by 1,25(OH) ₂ D ₃ in a Sex-Dependent Manner. BioMed Research International, 2015, 2015, 1-9.	1.9	13
221	Estrogen signaling and estrogen receptors as prognostic indicators in laryngeal cancer. Steroids, 2019, 152, 108498.	1.8	13
222	Loss of Estrogen Receptors is Associated with Increased Tumor Aggression in Laryngeal Squamous Cell Carcinoma. Scientific Reports, 2020, 10, 4227.	3.3	13
223	Specific MicroRNAs Found in Extracellular Matrix Vesicles Regulate Proliferation and Differentiation in Growth Plate Chondrocytes. Calcified Tissue International, 2021, 109, 455-468.	3.1	13
224	Re-use of implant coverscrews changes their surface properties but not clinical outcome. Clinical Oral Implants Research, 2000, 11, 183-194.	4.5	12
225	Coordinated tether formation in anatomically distinct mice growth centers is dependent on a functional vitamin D receptor and is tightly linked to three-dimensional tissue morphology. Bone, 2011, 49, 419-427.	2.9	12
226	Rapid 1α,25(OH) ₂ D ₃ membrane-mediated activation of Ca ²⁺ /calmodulin-dependent protein kinase II in growth plate chondrocytes requires Pdia3, PLAA and caveolae. Connective Tissue Research, 2014, 55, 125-128.	2.3	12
227	Craniosynostosis and Resynostosis. Journal of Dental Research, 2016, 95, 846-852.	5.2	12
228	In vivo evaluation of an electrospun and 3D printed cellular delivery device for dermal wound healing. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2560-2570.	3.4	12
229	Benchtop plasma treatment of titanium surfaces enhances cell response. Dental Materials, 2021, 37, 690-700.	3.5	12
230	Osteogenic Embryoid Body-Derived Material Induces Bone Formation In Vivo. Scientific Reports, 2015, 5, 9960.	3.3	11
231	Differential spatial regulation of BMP molecules is associated with single-suture craniosynostosis. Journal of Neurosurgery: Pediatrics, 2016, 18, 83-91.	1.3	11
232	Effects of Tunable Keratin Hydrogel Erosion on Recombinant Human Bone Morphogenetic Protein 2 Release, Bioactivity, and Bone Induction. Tissue Engineering - Part A, 2018, 24, 1616-1630.	3.1	11
233	Regulation of extracellular matrix vesicles via rapid responses to steroid hormones during endochondral bone formation. Steroids, 2019, 142, 43-47.	1.8	11
234	Use of molecular beacons to image effects of titanium surface microstructure on β1 integrin expression in live osteoblast-like cells. Biomaterials, 2010, 31, 7640-7647.	11.4	10

#	Article	IF	CITATIONS
235	Sex Differences in Osteoarthritis of the Knee. Journal of the American Academy of Orthopaedic Surgeons, The, 2012, 20, 668-669.	2.5	10
236	Effects of lowâ€frequency ultrasound treatment of titanium surface roughness on osteoblast phenotype and maturation. Clinical Oral Implants Research, 2017, 28, e151-e158.	4.5	10
237	Differential Effects of Neurectomy and Botox-induced Muscle Paralysis on Bone Phenotype and Titanium Implant Osseointegration. Bone, 2021, 153, 116145.	2.9	10
238	Response of Musculoskeletal Cells to Biomaterials. Journal of the American Academy of Orthopaedic Surgeons, The, 2006, 14, S157-S162.	2.5	10
239	Human Bone Marrow Stromal Cell Exosomes Ameliorate Periodontitis. Journal of Dental Research, 2022, 101, 1110-1118.	5.2	10
240	Does Sex Matter in Musculoskeletal Health? A Workshop Report. Orthopedic Clinics of North America, 2006, 37, 523-529.	1.2	9
241	Characterization of Distinct Classes of Differential Gene Expression in Osteoblast Cultures from Non-Syndromic Craniosynostosis Bone. Journal of Genomics, 2014, 2, 121-130.	0.9	9
242	Estradiol receptor profile and estrogen responsiveness in laryngeal cancer and clinical outcomes. Steroids, 2019, 142, 34-42.	1.8	9
243	Growth factors produced by bone marrow stromal cells on nanoroughened titanium–aluminum–vanadium surfaces program distal MSCs into osteoblasts via BMP2 signaling. Journal of Orthopaedic Research, 2020, 39, 1908-1920.	2.3	9
244	Microencapsulated rabbit adipose stem cells initiate tissue regeneration in a rabbit ear defect model. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1742-1753.	2.7	8
245	24R,25-dihydroxyvitamin D3 modulates tumorigenicity in breast cancer in an estrogen receptor-dependent manner. Steroids, 2019, 150, 108447.	1.8	8
246	Advanced Glycation End Products Are Retained in Decellularized Muscle Matrix Derived from Aged Skeletal Muscle. International Journal of Molecular Sciences, 2021, 22, 8832.	4.1	8
247	RNU (Foxn1RNU-Nude) Rats Demonstrate an Improved Ability to Regenerate Muscle in a Volumetric Muscle Injury Compared to Sprague Dawley Rats. Bioengineering, 2021, 8, 12.	3.5	8
248	Expression and production of stathmin in growth plate chondrocytes is cell-maturation dependent. Journal of Cellular Biochemistry, 2000, 79, 150-163.	2.6	7
249	Thrombin peptide TP508 prevents nitric oxide mediated apoptosis in chondrocytes in the endochondral developmental pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 12-22.	4.1	7
250	Rapid re-synostosis following suturectomy in pediatric mice is age and location dependent. Bone, 2013, 53, 284-293.	2.9	7
251	Acellular mineralized allogenic block bone graft does not remodel during the 10 weeks following concurrent implant placement in a rabbit femoral model. Clinical Oral Implants Research, 2020, 31, 37-48.	4.5	7
252	Production of osteogenic and angiogenic factors by microencapsulated adipose stem cells varies with culture conditions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1857-1867.	3.4	7

#	Article	IF	CITATIONS
253	Adipose Stem Cell Microbeads as Production Sources for Chondrogenic Growth Factors. Journal of Stem Cells and Regenerative Medicine, 2014, 10, 38-48.	2.2	7
254	Steroid hormone action in musculoskeletal cells involves membrane receptor and nuclear receptor mechanisms. Connective Tissue Research, 2003, 44 Suppl 1, 130-5.	2.3	7
255	Stathmin Levels in Growth Plate Chondrocytes Are Modulated by Vitamin D ₃ Metabolites and Transforming Growth Factor-β1 and Are Associated with Proliferation. Endocrine, 2001, 15, 093-102.	2.2	6
256	Algorithm to Assess Cranial Suture Fusion with Varying and Discontinuous Mineral Density. Annals of Biomedical Engineering, 2012, 40, 1597-1609.	2.5	6
257	Biphasic Fusion of the Murine Posterior Frontal Suture. Plastic and Reconstructive Surgery, 2013, 131, 727-740.	1.4	6
258	DOES SEX MATTER IN MUSCULOSKELETAL HEALTH?. Journal of Bone and Joint Surgery - Series A, 2005, 87, 1631-1647.	3.0	6
259	miRâ€122 and the WNT/βâ€catenin pathway inhibit effects of both interleukinâ€1β and tumor necrosisÂfactorâ articular chondrocytes in vitro. Journal of Cellular Biochemistry, 2022, , .	€Î±in 2.6	6
260	Effect of 17β-estradiol on estrogen receptor negative breast cancer cells in an osteolytic mouse model. Steroids, 2019, 142, 28-33.	1.8	5
261	Hot isostatic pressure treatment of 3D printed Ti6Al4V alters surface modifications and cellular response. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1262-1273.	3.4	5
262	The Relative Expression of ERα Isoforms ERα66 and ERα36 Controls the Cellular Response to 24R,25-Dihydroxyvitamin D3 in Breast Cancer. Molecular Cancer Research, 2021, 19, 99-111.	3.4	5
263	The Biological Basis for Surface-dependent Regulation of Osteogenesis and Implant Osseointegration. Journal of the American Academy of Orthopaedic Surgeons, The, 2022, 30, e894-e898.	2.5	5
264	Cartilage. , 2011, , 507-519.		4
265	Platelet-rich plasma and alignment enhance myogenin via ERK mitogen activated protein kinase signaling. Biomedical Materials (Bristol), 2018, 13, 055009.	3.3	4
266	7.17 Bone Tissue Grafting and Tissue Engineering Concepts â~†. , 2017, , 298-313.		3
267	Cartilage. , 2018, , 405-417.		3
268	Sex-specific effects of 17β-estradiol and dihydrotestosterone (DHT) on growth plate chondrocytes are dependent on both ERα and ERβ and require palmitoylation to translocate the receptors to the plasma membrane. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 159028.	2.4	3
269	Cell and Tissue Response to Polyethylene Terephthalate Mesh Containing Bone Allograft in Vitro and in Vivo. International Journal of Spine Surgery, 2020, 14, 7135.	1.5	3
270	Hydrophilic implants generated using a low-cost dielectric barrier discharge plasma device at the time of placement exhibit increased osseointegration in an animal pre-clinical study: An effect that is sex-dependent. Dental Materials, 2022, 38, 632-645.	3.5	3

#	Article	IF	CITATIONS
271	Imaging analysis of the interface between osteoblasts and microrough surfaces of laserâ€sintered titanium alloy constructs. Journal of Microscopy, 2018, 270, 41-52.	1.8	2
272	Amelogenin Peptide Extract Increases Differentiation and Angiogenic and Local Factor Production and Inhibits Apoptosis in Human Osteoblasts. ISRN Biomaterials, 2013, 2013, 1-11.	0.7	2
273	'Smart' biomaterials and osteoinductivity. Nature Reviews Rheumatology, 2011, 7, 1-1.	8.0	1
274	Bacterial Adhesion on Polyelectrolyte Modified Microstructured Titanium Surfaces. Materials Research Society Symposia Proceedings, 2010, 1277, 6101.	0.1	0
275	7.22 The Effect of Substrate Microtopography on Osteointegration of Titanium Implants â~†. , 2017, , 429-443.		0
276	Vitamin D and Cartilage â~†. , 2017, , .		0
277	Critical Evaluation of Biomechanical Principles and Radiographic Indicators for Fusion Assessment in a Novel Conformable Porous Mesh Implant. International Journal of Spine Surgery, 2020, 14, S108-S114.	1.5	Ο