## Natalia Diaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7009110/publications.pdf Version: 2024-02-01



Ναταιία Πίας

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Amphiphilic cyclodextrins: Dimerization and diazepam binding explored by molecular dynamics simulations. Journal of Molecular Liquids, 2022, 349, 118457.                                                                   | 4.9 | 6         |
| 2  | QM/MM Energy Decomposition Using the Interacting Quantum Atoms Approach. Journal of Chemical<br>Information and Modeling, 2022, 62, 1510-1524.                                                                              | 5.4 | 6         |
| 3  | Understanding the Conformational Properties of Fluorinated Polypeptides: Molecular Modelling of Unguisin A. Journal of Chemical Information and Modeling, 2021, 61, 223-237.                                                | 5.4 | 2         |
| 4  | Influence of charge configuration on substrate binding to SARS-CoV-2 main protease. Chemical Communications, 2021, 57, 5314-5317.                                                                                           | 4.1 | 14        |
| 5  | Alkali and Alkalineâ€Earth Cations in Complexes with Small Bioorganic Ligands: Abâ€Initio Benchmark<br>Calculations and Bond Energy Decomposition. ChemPhysChem, 2020, 21, 99-112.                                          | 2.1 | 10        |
| 6  | Aptamers targeting protein-specific glycosylation in tumor biomarkers: general selection, characterization and structural modeling. Chemical Science, 2020, 11, 9402-9413.                                                  | 7.4 | 22        |
| 7  | SARS-CoV-2 Main Protease: A Molecular Dynamics Study. Journal of Chemical Information and Modeling, 2020, 60, 5815-5831.                                                                                                    | 5.4 | 112       |
| 8  | Fluorine conformational effects characterized by energy decomposition analysis. Physical Chemistry<br>Chemical Physics, 2019, 21, 25258-25275.                                                                              | 2.8 | 13        |
| 9  | Affinity Calculations of Cyclodextrin Host–Guest Complexes: Assessment of Strengths and<br>Weaknesses of End-Point Free Energy Methods. Journal of Chemical Information and Modeling, 2019,<br>59, 421-440.                 | 5.4 | 17        |
| 10 | Application of the Interacting Quantum Atoms Approach to the S66 and Ionicâ€Hydrogenâ€Bond Datasets<br>for Noncovalent Interactions. ChemPhysChem, 2018, 19, 973-987.                                                       | 2.1 | 21        |
| 11 | Interacting Quantum Atoms Approach and Electrostatic Solvation Energy: Assessing Atomic and Group Solvation Contributions. ChemPhysChem, 2018, 19, 3425-3435.                                                               | 2.1 | 5         |
| 12 | Molecular Dynamics Studies of Matrix Metalloproteases. Methods in Molecular Biology, 2017, 1579, 111-134.                                                                                                                   | 0.9 | 2         |
| 13 | Conformational and entropy analyses of extended molecular dynamics simulations of α-, β- and<br>γ-cyclodextrins and of the I²-cyclodextrin/nabumetone complex. Physical Chemistry Chemical Physics,<br>2017, 19, 1431-1440. | 2.8 | 17        |
| 14 | Ligand Strain and Entropic Effects on the Binding of Macrocyclic and Linear Inhibitors: Molecular<br>Modeling of Penicillopepsin Complexes. Journal of Chemical Information and Modeling, 2017, 57,<br>2045-2055.           | 5.4 | 7         |
| 15 | Role of the Protonation State on the Structure and Dynamics of Albumin. Journal of Chemical Theory and Computation, 2016, 12, 1972-1988.                                                                                    | 5.3 | 9         |
| 16 | Unraveling the distinctive features of hemorrhagic and non-hemorrhagic snake venom<br>metalloproteinases using molecular simulations. Journal of Computer-Aided Molecular Design, 2016,<br>30, 69-83.                       | 2.9 | 4         |
| 17 | Molecular Modeling of Bioorganometallic Compounds: Thermodynamic Properties of<br>Molybdocene–Glutathione Complexes and Mechanism of Peptide Hydrolysis. ChemPhysChem, 2015, 16,<br>1646-1656.                              | 2.1 | 3         |
| 18 | Extensive Simulations of the Full-Length Matrix Metalloproteinase-2 Enzyme in a Prereactive Complex with a Collagen Triple-Helical Peptide. Biochemistry, 2015, 54, 1243-1258.                                              | 2.5 | 5         |

NATALIA DIAZ

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Direct methods for computing singleâ€molecule entropies from molecular simulations. Wiley<br>Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 1-26.                                                                                         | 14.6 | 39        |
| 20 | An Integrated Computational and Experimental Approach to Gaining Selectivity for MMPâ€2 within the Gelatinase Subfamily. ChemBioChem, 2014, 15, 399-412.                                                                                                        | 2.6  | 24        |
| 21 | A combined semiempirical and DFT computational protocol for studying bioorganometallic complexes:<br>Application to molybdocene–cysteine complexes. Journal of Computational Chemistry, 2014, 35, 324-334.                                                      | 3.3  | 3         |
| 22 | Sampling Assessment for Molecular Simulations Using Conformational Entropy Calculations. Journal of Chemical Theory and Computation, 2014, 10, 4718-4729.                                                                                                       | 5.3  | 13        |
| 23 | Progress towards water-soluble triazole-based selective MMP-2 inhibitors. Organic and Biomolecular<br>Chemistry, 2013, 11, 6623.                                                                                                                                | 2.8  | 31        |
| 24 | CENCALC: A computational tool for conformational entropy calculations from molecular simulations. Journal of Computational Chemistry, 2013, 34, 2041-2054.                                                                                                      | 3.3  | 32        |
| 25 | Unraveling the Molecular Structure of the Catalytic Domain of Matrix Metalloproteinase-2 in<br>Complex with a Triple-Helical Peptide by Means of Molecular Dynamics Simulations. Biochemistry, 2013,<br>52, 8556-8569.                                          | 2.5  | 6         |
| 26 | Alternative Interdomain Configurations of the Full-Length MMP-2 Enzyme Explored by Molecular<br>Dynamics Simulations. Journal of Physical Chemistry B, 2012, 116, 2677-2686.                                                                                    | 2.6  | 8         |
| 27 | Ab Initio Benchmark Calculations on Ca(II) Complexes and Assessment of Density Functional Theory<br>Methodologies. Journal of Physical Chemistry A, 2011, 115, 11331-11343.                                                                                     | 2.5  | 8         |
| 28 | Entropy Calculations of Single Molecules by Combining the Rigid–Rotor and Harmonic-Oscillator<br>Approximations with Conformational Entropy Estimations from Molecular Dynamics Simulations.<br>Journal of Chemical Theory and Computation, 2011, 7, 2638-2653. | 5.3  | 56        |
| 29 | Quantum chemical calculations of stability constants: study of ligand effects on the relative stability of Pd(II)–peptide complexes. Theoretical Chemistry Accounts, 2011, 128, 465-475.                                                                        | 1.4  | 6         |
| 30 | Kinetic and binding effects in peptide substrate selectivity of matrix metalloproteinaseâ€2: Molecular<br>dynamics and QM/MM calculations. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1-11.                                                    | 2.6  | 16        |
| 31 | Strong <i>In Vitro</i> Activities of Two New Rifabutin Analogs against Multidrug-Resistant<br><i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 5363-5365.                                                                   | 3.2  | 9         |
| 32 | Understanding Regioselective Cleavage in Peptide Hydrolysis by a Palladium(II) Aqua Complex: A<br>Theoretical Point of View. Journal of Physical Chemistry B, 2010, 114, 8525-8535.                                                                             | 2.6  | 11        |
| 33 | Interdomain Conformations in the Full-Length MMP-2 Enzyme Explored by Proteinâ^ Protein Docking Calculations Using pyDock. Journal of Chemical Theory and Computation, 2010, 6, 2204-2213.                                                                      | 5.3  | 6         |
| 34 | Molecular dynamics and quantum mechanical calculations on the mononuclear zinc-β-lactamase from<br>Bacillus cereus: Protonation state of the active site and imipenem binding. Computational and<br>Theoretical Chemistry, 2009, 912, 105-112.                  | 1.5  | 2         |
| 35 | Thermochemical Fragment Energy Method for Biomolecules: Application to a Collagen Model Peptide.<br>Journal of Chemical Theory and Computation, 2009, 5, 1667-1679.                                                                                             | 5.3  | 37        |
| 36 | Molecular dynamics simulations of the active matrix metalloproteinaseâ€2: Positioning of the<br>Nâ€ŧerminal fragment and binding of a small peptide substrate. Proteins: Structure, Function and<br>Bioinformatics, 2008, 72, 50-61.                            | 2.6  | 18        |

NATALIA DIAZ

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ring opening at N1–C2 bond of azetidin-2-ones by a molybdenum hydroxo-carbonyl complex: evidence from a computational study. Dalton Transactions, 2008, , 6427.                                                             | 3.3  | 1         |
| 38 | Peptide Hydrolysis Catalyzed by Matrix Metalloproteinase 2: A Computational Study. Journal of Physical Chemistry B, 2008, 112, 8412-8424.                                                                                   | 2.6  | 32        |
| 39 | Entropic Control of the Relative Stability of Triple-helical Collagen Peptide Models. Journal of<br>Physical Chemistry B, 2008, 112, 15248-15255.                                                                           | 2.6  | 17        |
| 40 | From the X-ray Compact Structure to the Elongated Form of the Full-Length MMP-2 Enzyme in<br>Solution: A Molecular Dynamics Study. Journal of the American Chemical Society, 2008, 130,<br>14070-14071.                     | 13.7 | 19        |
| 41 | Monoligand Zn(II) Complexes:  Ab Initio Benchmark Calculations and Comparison with Density<br>Functional Theory Methodologies. Journal of Chemical Theory and Computation, 2008, 4, 243-256.                                | 5.3  | 35        |
| 42 | Molecular Dynamics Simulations of Matrix Metalloproteinase 2:  Role of the Structural Metal<br>Ions <sup>,</sup> . Biochemistry, 2007, 46, 8943-8952.                                                                       | 2.5  | 37        |
| 43 | A Computational Study of the Deacylation Mechanism of Human Butyrylcholinesterase. Biochemistry, 2006, 45, 7529-7543.                                                                                                       | 2.5  | 22        |
| 44 | Molecular Dynamics Simulations of Class C β-Lactamase fromCitrobacter freundii: Insights into the<br>Base Catalyst for Acylationâ€. Biochemistry, 2006, 45, 439-451.                                                        | 2.5  | 16        |
| 45 | Assessing the Protonation State of Drug Molecules:Â The Case of Aztreonam. Journal of Medicinal<br>Chemistry, 2006, 49, 3235-3243.                                                                                          | 6.4  | 13        |
| 46 | Quantum Chemical Study on the Coordination Environment of the Catalytic Zinc Ion in Matrix<br>Metalloproteinases. Journal of Physical Chemistry B, 2006, 110, 24222-24230.                                                  | 2.6  | 19        |
| 47 | Theoretical Studies on the Ring Opening of β-lactams: Processes in Solution and in Enzymatic<br>Media. Current Organic Chemistry, 2006, 10, 805-821.                                                                        | 1.6  | 28        |
| 48 | Molecular Dynamics Simulations of the TEM-1 β-Lactamase Complexed with Cephalothin. Journal of<br>Medicinal Chemistry, 2005, 48, 780-791.                                                                                   | 6.4  | 29        |
| 49 | Insights into the Base Catalysis Exerted by the DD-Transpeptidase fromStreptomycesK15:Â A Molecular<br>Dynamics Studyâ€. Biochemistry, 2005, 44, 3225-3240.                                                                 | 2.5  | 5         |
| 50 | Zn2+catalysed hydrolysis of β-lactams: experimental and theoretical studies on the influence of the β-lactam structure. New Journal of Chemistry, 2004, 28, 15-25.                                                          | 2.8  | 10        |
| 51 | Insights into the Phosphoryl-Transfer Mechanism of cAMP-Dependent Protein Kinase from Quantum<br>Chemical Calculations and Molecular Dynamics Simulations. Journal of the American Chemical<br>Society, 2004, 126, 529-542. | 13.7 | 67        |
| 52 | Conformational properties of penicillins: Quantum chemical calculations and molecular dynamics simulations of benzylpenicillin. Journal of Computational Chemistry, 2003, 24, 1864-1873.                                    | 3.3  | 11        |
| 53 | A Combined Theoretical and Experimental Research Project into the Aminolysis ofβ-Lactam Antibiotics:<br>The Importance of Bifunctional Catalysis. European Journal of Organic Chemistry, 2003, 2003, 4161-4172.             | 2.4  | 9         |
| 54 | Insights into the Acylation Mechanism of Class A β-Lactamases from Molecular Dynamics Simulations<br>of the TEM-1 Enzyme Complexed with Benzylpenicillin. Journal of the American Chemical Society, 2003,<br>125, 672-684.  | 13.7 | 61        |

NATALIA DIAZ

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Ureases:  Quantum Chemical Calculations on Cluster Models. Journal of the American Chemical<br>Society, 2003, 125, 15324-15337.                                                                                                                    | 13.7 | 82        |
| 56 | Water-Assisted Alkaline Hydrolysis of Monobactams: A Theoretical Study. Chemistry - A European<br>Journal, 2002, 8, 859-867.                                                                                                                       | 3.3  | 13        |
| 57 | Theoretical Study of Ammonolysis of Monobactams: Kinetic Role of theN-Sulfonate Group. Helvetica<br>Chimica Acta, 2002, 85, 206-223.                                                                                                               | 1.6  | 6         |
| 58 | Molecular dynamics simulations of the dinuclear zinc-β-lactamase from Bacteroides fragilis complexed with imipenem. Journal of Computational Chemistry, 2002, 23, 1587-1600.                                                                       | 3.3  | 52        |
| 59 | Molecular Dynamics Study of the IIA Binding Site in Human Serum Albumin:Â Influence of the<br>Protonation State of Lys195 and Lys199. Journal of Medicinal Chemistry, 2001, 44, 250-260.                                                           | 6.4  | 74        |
| 60 | A Theoretical Study of the Aminolysis Reaction of Lysine 199 of Human Serum Albumin with<br>Benzylpenicillin:Â Consequences for Immunochemistry of Penicillins. Journal of the American Chemical<br>Society, 2001, 123, 7574-7583.                 | 13.7 | 23        |
| 61 | Acylation of Class A β-lactamases by Penicillins:  A Theoretical Examination of the Role of Serine 130 and the β-lactam Carboxylate Group. Journal of Physical Chemistry B, 2001, 105, 11302-11313.                                                | 2.6  | 42        |
| 62 | Molecular Dynamics Simulations of the Mononuclear Zinc-β-lactamase fromBacilluscereusComplexed<br>with Benzylpenicillin and a Quantum Chemical Study of the Reaction Mechanism. Journal of the<br>American Chemical Society, 2001, 123, 9867-9879. | 13.7 | 66        |
| 63 | Evaluation of the Catalytic Mechanism of AICAR Transformylase by pH-Dependent Kinetics,<br>Mutagenesis, and Quantum Chemical Calculations. Journal of the American Chemical Society, 2001, 123,<br>4687-4696.                                      | 13.7 | 15        |
| 64 | Theoretical Study of Amine-Assisted Aminolysis of Penicillins â^' The Kinetic Role of the Carboxylate<br>Group. European Journal of Organic Chemistry, 2001, 2001, 793-801.                                                                        | 2.4  | 4         |
| 65 | Hydration of zinc ions: theoretical study of [Zn(H2O)4](H2O)82+ and [Zn(H2O)6](H2O)62+. Chemical Physics Letters, 2000, 326, 288-292.                                                                                                              | 2.6  | 45        |
| 66 | Theoretical Study of the Water-Assisted Aminolysis of β-Lactams: Implications for the Reaction between<br>Human Serum Albumin and Penicillins. Journal of the American Chemical Society, 2000, 122, 6710-6719.                                     | 13.7 | 29        |
| 67 | Zinc Metallo-β-Lactamase from Bacteroides fragilis:  A Quantum Chemical Study on Model Systems of the American Chemical Society, 2000, 122, 4197-4208.                                                                                             | 13.7 | 84        |
| 68 | Ammonolysis and Aminolysis ofβ-Lactams: A Theoretical Study. Chemistry - A European Journal, 1999, 5,<br>1045-1054.                                                                                                                                | 3.3  | 20        |
| 69 | NH3-Assisted Ammonolysis of β-Lactams: A Theoretical Study. Journal of Organic Chemistry, 1999, 64,<br>3281-3289.                                                                                                                                  | 3.2  | 16        |
| 70 | Importance of a Synperiplanar Stepwise Mechanism through Neutral Intermediates in the Aminolysis<br>of Monocyclic β-Lactams: A Theoretical Analysis. Journal of Organic Chemistry, 1999, 64, 9144-9152.                                            | 3.2  | 11        |
| 71 | Ammonolysis and Aminolysis of -Lactams: A Theoretical Study. Chemistry - A European Journal, 1999, 5,<br>1045-1054.                                                                                                                                | 3.3  | 0         |
| 72 | Theoretical Study of the Reaction 1[:CH2] + CHO+ → CH3+ + CO. Journal of Physical Chemistry A, 1998, 102, 9918-9924.                                                                                                                               | 2.5  | 6         |