Ia Ieropoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7009009/publications.pdf

Version: 2024-02-01

45213 31902 9,719 196 53 90 citations g-index h-index papers 199 199 199 4964 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microbial Fuel Cells, Concept, and Applications. , 2022, , 875-909.		O
2	Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. Journal of Power Sources, 2022, 520, 230875.	4.0	30
3	Integration of Cost-Efficient Carbon Electrodes into the Development of Microbial Fuel Cells. Carbon Materials, 2022, , 43-57.	0.2	1
4	Development of a Bio-Digital Interface Powered by Microbial Fuel Cells. Sustainability, 2022, 14, 1735.	1.6	3
5	Nutrients Removal from Aquaculture Wastewater by Biofilter/Antibiotic-Resistant Bacteria Systems. Water (Switzerland), 2022, 14, 607.	1.2	3
6	Microbial fuel cell compared to a chemostat. Chemosphere, 2022, 296, 133967.	4.2	11
7	Phototrophic microbial fuel cells. , 2022, , 699-727.		O
8	Prevention and removal of membrane and separator biofouling in bioelectrochemical systems: a comprehensive review. IScience, 2022, 25, 104510.	1.9	16
9	Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine. Process Biochemistry, 2021, 101, 294-303.	1.8	11
10	Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators. Electrochimica Acta, 2021, 367, 137385.	2.6	20
11	Neural Networks Predicting Microbial Fuel Cells Output for Soft Robotics Applications. Frontiers in Robotics and Al, 2021, 8, 633414.	2.0	15
12	Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells. IScience, 2021, 24, 102805.	1.9	6
13	Electronic faucet powered by low cost ceramic microbial fuel cells treating urine. Journal of Power Sources, 2021, 506, 230004.	4.0	6
14	Effect of simple interventions on the performance of a miniature MFC fed with fresh urine. International Journal of Hydrogen Energy, 2021, 46, 33594-33600.	3.8	5
15	Microbial fuel cells and their electrified biofilms. Biofilm, 2021, 3, 100057.	1.5	52
16	Microbial fuel cells in the house: A study on real household wastewater samples for treatment and power. Sustainable Energy Technologies and Assessments, 2021, 48, 101618.	1.7	8
17	Microbial Fuel Cell Based Thermosensor for Robotic Applications. Frontiers in Robotics and Al, 2021, 8, 558953.	2.0	4
18	Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities. Biotechnology Advances, 2020, 39, 107456.	6.0	55

#	Article	IF	CITATIONS
19	Microbial fuel cells directly powering a microcomputer. Journal of Power Sources, 2020, 446, 227328.	4.0	53
20	Scaling up self-stratifying supercapacitive microbial fuel cell. International Journal of Hydrogen Energy, 2020, 45, 25240-25248.	3.8	12
21	Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells. Energy, 2020, 213, 118806.	4.5	32
22	From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights. Applied Energy, 2020, 277, 115514.	5.1	42
23	Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes. Applied Energy, 2020, 278, 115528.	5.1	24
24	Complete Microbial Fuel Cell Fabrication Using Additive Layer Manufacturing. Molecules, 2020, 25, 3051.	1.7	16
25	Developing 3D-Printable Cathode Electrode for Monolithically Printed Microbial Fuel Cells (MFCs). Molecules, 2020, 25, 3635.	1.7	17
26	Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells. Microorganisms, 2020, 8, 1921.	1.6	18
27	Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte. Electrochimica Acta, 2020, 353, 136530.	2.6	10
28	Optimisation of the internal structure of ceramic membranes for electricity production in urine-fed microbial fuel cells. Journal of Power Sources, 2020, 451, 227741.	4.0	28
29	Scalability and stacking of self-stratifying microbial fuel cells treating urine. Bioelectrochemistry, 2020, 133, 107491.	2.4	31
30	Resilience and limitations of MFC anodic community when exposed to antibacterial agents. Bioelectrochemistry, 2020, 134, 107500.	2.4	23
31	Urine in Bioelectrochemical Systems: An Overall Review. ChemElectroChem, 2020, 7, 1312-1331.	1.7	43
32	Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Applied Energy, 2020, 262, 114475.	5.1	54
33	Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations. Bioelectrochemistry, 2020, 133, 107459.	2.4	41
34	Multidimensional Benefits of Improved Sanitation: Evaluating †PEE POWER®' in Kisoro, Uganda. International Journal of Environmental Research and Public Health, 2020, 17, 2175.	1.2	12
35	Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species. Scientific Reports, 2020, 10, 5533.	1.6	17
36	A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells. Electrochimica Acta, 2020, 353, 136388.	2.6	20

3

#	Article	IF	CITATIONS
37	Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. Journal of Environmental Management, 2020, 258, 109992.	3.8	39
38	Microbial Fuel Cells, Concept, and Applications. , 2020, , 1-35.		0
39	Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height. International Journal of Hydrogen Energy, 2019, 44, 4524-4532.	3.8	40
40	Multiâ€functional microbial fuel cells for power, treatment and electroâ€osmotic purification of urine. Journal of Chemical Technology and Biotechnology, 2019, 94, 2098-2106.	1.6	21
41	Modelling Microbial Fuel Cells Using Lattice Boltzmann Methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 2035-2045.	1.9	4
42	Removal of Hepatitis B virus surface HBsAg and core HBcAg antigens using microbial fuel cells producing electricity from human urine. Scientific Reports, 2019, 9, 11787.	1.6	11
43	Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design. Bioresource Technology Reports, 2019, 7, 100297.	1.5	24
44	Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines. Sustainable Energy and Fuels, 2019, 3, 2546-2560.	2.5	44
45	Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations. Journal of Power Sources, 2019, 436, 226832.	4.0	41
46	Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation. Bioelectrochemistry, 2019, 127, 68-75.	2.4	22
47	Long Term Feasibility Study of In-field Floating Microbial Fuel Cells for Monitoring Anoxic Wastewater and Energy Harvesting. Frontiers in Energy Research, 2019, 7, .	1.2	19
48	Living Architecture: Toward Energy Generating Buildings Powered by Microbial Fuel Cells. Frontiers in Energy Research, 2019, 7, .	1.2	11
49	Towards monolithically printed Mfcs: Development of a 3d-printable membrane electrode assembly (mea). International Journal of Hydrogen Energy, 2019, 44, 4450-4462.	3.8	19
50	Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation. Journal of Power Sources, 2019, 429, 30-37.	4.0	27
51	Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach. Applied Energy, 2019, 251, 113321.	5.1	13
52	Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes. International Journal of Hydrogen Energy, 2019, 44, 15344-15354.	3.8	14
53	Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine. Journal of Power Sources, 2019, 425, 50-59.	4.0	29
54	Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine. Electrochimica Acta, 2019, 307, 241-252.	2.6	38

#	Article	IF	Citations
55	Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 587-599.	1.4	12
56	A Comprehensive Study of Custom-Made Ceramic Separators for Microbial Fuel Cells: Towards "Living―Bricks. Energies, 2019, 12, 4071.	1.6	23
57	Microbial Life for Robotics – towards artificial life. , 2019, , .		O
58	Towards the optimisation of ceramic-based microbial fuel cells: A three-factor three-level response surface analysis design. Biochemical Engineering Journal, 2019, 144, 119-124.	1.8	30
59	Increased power generation in supercapacitive microbial fuel cell stack using Fe N C cathode catalyst. Journal of Power Sources, 2019, 412, 416-424.	4.0	42
60	Design mining microbial fuel cell cascades. Soft Computing, 2019, 23, 4673-4683.	2.1	8
61	Microbial Life for Robotics – towards artificial life. , 2019, , .		0
62	Ceramic Microbial Fuel Cells Stack: power generation in standard and supercapacitive mode. Scientific Reports, 2018, 8, 3281.	1.6	55
63	Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell. Bioelectrochemistry, 2018, 123, 119-124.	2.4	26
64	Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst. Electrochimica Acta, 2018, 265, 56-64.	2.6	79
65	Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs. Journal of Power Sources, 2018, 378, 169-175.	4.0	85
66	Investigation of ceramic MFC stacks for urine energy extraction. Bioelectrochemistry, 2018, 123, 19-25.	2.4	46
67	Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. Energy, 2018, 144, 1073-1079.	4.5	71
68	Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement. Energies, 2018, 11, 2377.	1.6	17
69	Recent advancements in real-world microbial fuel cell applications. Current Opinion in Electrochemistry, 2018, 11, 78-83.	2.5	146
70	Miniaturized Ceramic-Based Microbial Fuel Cell for Efficient Power Generation From Urine and Stack Development. Frontiers in Energy Research, 2018, 6, 84.	1.2	53
71	PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 2018, 392, 150-158.	4.0	106
72	Transport of Live Cells Under Sterile Conditions Using a Chemotactic Droplet. Scientific Reports, 2018, 8, 8408.	1.6	16

#	Article	IF	Citations
73	Passive Feeding in Paper-Based Microbial Fuel Cells. ECS Transactions, 2018, 85, 1193-1200.	0.3	4
74	Dynamic evolution of anodic biofilm when maturing under different external resistive loads in microbial fuel cells. Electrochemical perspective. Journal of Power Sources, 2018, 400, 392-401.	4.0	58
75	Urine microbial fuel cells in a semi-controlled environment for onsite urine pre-treatment and electricity production. Journal of Power Sources, 2018, 400, 441-448.	4.0	42
76	A New Method for Modulation, Control and Power Boosting in Microbial Fuel Cells. Fuel Cells, 2018, 18, 663-668.	1.5	12
77	Field Trial of Self-Stratifying Membrane-Less Microbial Fuel Cells Stacks in an Autonomous and Self-Powered Urinal. ECS Meeting Abstracts, 2018, , .	0.0	0
78	Energy and metabolism. , 2018, , .		0
79	Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging. Applied Energy, 2017, 192, 575-581.	5.1	102
80	Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring. Sensors and Actuators B: Chemical, 2017, 244, 815-822.	4.0	96
81	3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technologies and Assessments, 2017, 19, 94-101.	1.7	57
82	Autonomous Energy Harvesting and Prevention of Cell Reversal in MFC Stacks. Journal of the Electrochemical Society, 2017, 164, H3047-H3051.	1.3	30
83	Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 2017, 356, 225-244.	4.0	1,264
84	Allometric scaling of microbial fuel cells and stacks: The lifeform case for scale-up. Journal of Power Sources, 2017, 356, 365-370.	4.0	55
85	Cellular non-linear network model of microbial fuel cell. BioSystems, 2017, 156-157, 53-62.	0.9	13
86	Electricity production from human urine in ceramic microbial fuel cells with alternative non-fluorinated polymer binders for cathode construction. Separation and Purification Technology, 2017, 187, 436-442.	3.9	20
87	Electricity and catholyte production from ceramic MFCs treating urine. International Journal of Hydrogen Energy, 2017, 42, 1791-1799.	3.8	50
88	Gelatin as a promising printable feedstock for microbial fuel cells (MFC). International Journal of Hydrogen Energy, 2017, 42, 1783-1790.	3.8	10
89	Microbial Desalination Cells with Efficient Platinumâ€Groupâ€Metalâ€Free Cathode Catalysts. ChemElectroChem, 2017, 4, 3322-3330.	1.7	40
90	Towards a Self-powered Biosensors for Environmental Applications in Remote, Off-grid Areas. Procedia Technology, 2017, 27, 8-9.	1.1	1

#	Article	IF	Citations
91	Enhanced MFC power production and struvite recovery by the addition of sea salts to urine. Water Research, 2017, 109, 46-53.	5.3	82
92	Eating, Drinking, Living, Dying and Decaying Soft Robots. Biosystems and Biorobotics, 2017, , 95-101.	0.2	3
93	Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals. International Journal of Hydrogen Energy, 2017, 42, 1813-1819.	3.8	60
94	Living Architecture (Liar): Metabolically Engineered Building Units., 2017,, 168-175.		3
95	Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system. PLoS ONE, 2017, 12, e0176475.	1.1	44
96	EvoBot: Towards a Robot-Chemostat for Culturing and Maintaining Microbial Fuel Cells (MFCs). Lecture Notes in Computer Science, 2017, , 453-464.	1.0	3
97	Towards implementation of cellular automata in Microbial Fuel Cells. PLoS ONE, 2017, 12, e0177528.	1.1	13
98	Carbon-Based Air-Breathing Cathodes for Microbial Fuel Cells. Catalysts, 2016, 6, 127.	1.6	58
99	Supercapacitive microbial fuel cell: Characterization and analysis for improved charge storage/delivery performance. Bioresource Technology, 2016, 218, 552-560.	4.8	67
100	On hybrid circuits exploiting thermistive properties of slime mould. Scientific Reports, 2016, 6, 23924.	1.6	5
101	Study of the effects of ionic liquid-modified cathodes and ceramic separators on MFC performance. Chemical Engineering Journal, 2016, 291, 317-324.	6.6	27
102	Comprehensive Study on Ceramic Membranes for Lowâ€Cost Microbial Fuel Cells. ChemSusChem, 2016, 9, 88-96.	3.6	111
103	Here today, gone tomorrow: biodegradable soft robots. Proceedings of SPIE, 2016, , .	0.8	25
104	Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration. Bioresource Technology, 2016, 215, 285-289.	4.8	16
105	A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 2016, 215, 296-303.	4.8	142
106	Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride. Journal of Chemical Technology and Biotechnology, 2016, 91, 138-143.	1.6	9
107	An iTRAQ characterisation of the role of TolC during electron transfer from <i>Shewanella oneidensis</i> MRâ€1. Proteomics, 2016, 16, 2764-2775.	1.3	1
108	Toward Energetically Autonomous Foraging Soft Robots. Soft Robotics, 2016, 3, 186-197.	4.6	18

#	Article	IF	Citations
109	The practical implementation of microbial fuel cell technology. , 2016, , 357-380.		7
110	Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser. Scientific Reports, 2016, 6, 25571.	1.6	69
111	Regeneration of the power performance of cathodes affected by biofouling. Applied Energy, 2016, 173, 431-437.	5.1	56
112	Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column. Biotechnology for Biofuels, 2016, 9, 93.	6.2	67
113	Electricity generation and struvite recovery from human urine using microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2016, 91, 647-654.	1.6	80
114	Slime Mould Controller for Microbial Fuel Cells. Emergence, Complexity and Computation, 2016, , 285-298.	0.2	0
115	Towards effective small scale microbial fuel cells for energy generation from urine. Electrochimica Acta, 2016, 192, 89-98.	2.6	120
116	Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC. Bioinspiration and Biomimetics, 2016, 11, 016001.	1.5	22
117	Microalgae as substrate in low cost terracotta-based microbial fuel cells: Novel application of the catholyte produced. Bioresource Technology, 2016, 209, 380-385.	4.8	38
118	From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density. Sustainable Energy Technologies and Assessments, 2016, 14, 74-79.	1.7	52
119	Pee power urinal – microbial fuel cell technology field trials in the context of sanitation. Environmental Science: Water Research and Technology, 2016, 2, 336-343.	1.2	147
120	EvoBot: An Open-Source, Modular Liquid Handling Robot for Nurturing Microbial Fuel Cells., 2016,,.		4
121	Fade to Green: A Biodegradable Stack of Microbial Fuel Cells. ChemSusChem, 2015, 8, 2705-2712.	3.6	25
122	Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs. Bioelectrochemistry, 2015, 104, 58-64.	2.4	105
123	Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication. Journal of Power Sources, 2015, 289, 91-99.	4.0	57
124	Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors. Sensing and Bio-Sensing Research, 2015, 6, 43-50.	2.2	30
125	Row-bot: An energetically autonomous artificial water boatman. , 2015, , .		19
126	A novel small scale Microbial Fuel Cell design for increased electricity generation and waste water treatment. International Journal of Hydrogen Energy, 2015, 40, 4263-4268.	3.8	61

#	Article	IF	CITATIONS
127	An Energetically-Autonomous Robotic Tadpole with Single Membrane Stomach and Tail. Lecture Notes in Computer Science, 2015, , 366-378.	1.0	4
128	Cathode materials for ceramic based microbial fuel cells (MFCs). International Journal of Hydrogen Energy, 2015, 40, 14706-14715.	3.8	53
129	Microbial fuel cells continuously fuelled by untreated fresh algal biomass. Algal Research, 2015, 11, 103-107.	2.4	46
130	Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass and Bioenergy, 2015, 82, 87-93.	2.9	176
131	Urine-activated origami microbial fuel cells to signal proof of life. Journal of Materials Chemistry A, 2015, 3, 7058-7065.	5. 2	59
132	Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture. Water Research, 2015, 86, 108-115.	5. 3	42
133	Ceramic MFCs with internal cathode producing sufficient power for practical applications. International Journal of Hydrogen Energy, 2015, 40, 14627-14631.	3.8	49
134	Physarum polycephalum: Towards a biological controller. BioSystems, 2015, 127, 42-46.	0.9	7
135	Towards disposable microbial fuel cells: Natural rubber glove membranes. International Journal of Hydrogen Energy, 2014, 39, 21803-21810.	3.8	23
136	Algal †lagoon' effect for oxygenating MFC cathodes. International Journal of Hydrogen Energy, 2014, 39, 21857-21863.	3.8	20
137	The effects of wastewater types on power generation and phosphorus removal of microbial fuel cells (MFCs) with activated carbon (AC) cathodes. International Journal of Hydrogen Energy, 2014, 39, 21796-21802.	3.8	28
138	Biodegradable and edible gelatine actuators for use as artificial muscles. Proceedings of SPIE, 2014, , .	0.8	13
139	Dynamic polarisation reveals differential steady-state stabilisation and capacitive-like behaviour in microbial fuel cells. Sustainable Energy Technologies and Assessments, 2014, 5, 1-6.	1.7	15
140	The power of glove: Soft microbial fuel cell for low-power electronics. Journal of Power Sources, 2014, 249, 327-332.	4.0	48
141	Highâ€Performance, Totally Flexible, Tubular Microbial Fuel Cell. ChemElectroChem, 2014, 1, 1994-1999.	1.7	21
142	Intermittent load implementation in microbial fuel cells improves power performance. Bioresource Technology, 2014, 172, 365-372.	4.8	40
143	Micro-porous layer (MPL)-based anode for microbial fuel cells. International Journal of Hydrogen Energy, 2014, 39, 21811-21818.	3.8	40
144	A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosensors and Bioelectronics, 2014, 62, 182-188.	5. 3	196

#	Article	IF	Citations
145	Water formation at the cathode and sodium recovery using Microbial Fuel Cells (MFCs). Sustainable Energy Technologies and Assessments, 2014, 7, 187-194.	1.7	60
146	Controlling for peak power extraction from microbial fuel cells can increase stack voltage and avoid cell reversal. Journal of Power Sources, 2014, 269, 363-369.	4.0	56
147	Small-scale microbial fuel cells utilising uric salts. Sustainable Energy Technologies and Assessments, 2014, 6, 60-63.	1.7	5
148	Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks. Journal of Power Sources, 2014, 272, 34-38.	4.0	36
149	Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application. Bioresource Technology, 2014, 163, 54-63.	4.8	102
150	Wearable Self Sufficient MFC Communication System Powered by Urine. Lecture Notes in Computer Science, 2014, , 131-138.	1.0	4
151	Waste to real energy: the first MFC powered mobile phone. Physical Chemistry Chemical Physics, 2013, 15, 15312.	1.3	158
152	Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 2013, 36, 1913-1921.	1.7	71
153	Biodegradation and proton exchange using natural rubber in microbial fuel cells. Biodegradation, 2013, 24, 733-739.	1.5	55
154	Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine. International Journal of Hydrogen Energy, 2013, 38, 11543-11551.	3.8	78
155	The first self-sustainable microbial fuel cell stack. Physical Chemistry Chemical Physics, 2013, 15, 2278.	1.3	80
156	Effects of sulphate addition and sulphide inhibition on microbial fuel cells. Enzyme and Microbial Technology, 2013, 52, 32-37.	1.6	13
157	Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells. Bioresource Technology, 2013, 148, 480-486.	4.8	78
158	MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions. Bioresource Technology, 2013, 134, 158-165.	4.8	98
159	Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC). International Journal of Hydrogen Energy, 2013, 38, 11552-11558.	3.8	48
160	Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine. Journal of Power Sources, 2013, 238, 190-196.	4.0	63
161	Bi-directional electrical characterisation of microbial fuel cell. Bioresource Technology, 2013, 128, 769-773.	4.8	12
162	Photosynthetic cathodes for Microbial Fuel Cells. International Journal of Hydrogen Energy, 2013, 38, 11559-11564.	3.8	72

#	Article	lF	CITATIONS
163	Oxygenic phototrophic biofilms for improved cathode performance in microbial fuel cells. Algal Research, 2013, 2, 183-187.	2.4	51
164	Miniature microbial fuel cells and stacks for urine utilisation. International Journal of Hydrogen Energy, 2013, 38, 492-496.	3.8	86
165	High Power Generation by a Membraneless Single Chamber Microbial Fuel Cell (SCMFC) Using Enzymatic Bilirubin Oxidase (BOx) Air-Breathing Cathode. Journal of the Electrochemical Society, 2013, 160, H720-H726.	1.3	44
166	Artificial heartbeat: design and fabrication of a biologically inspired pump. Bioinspiration and Biomimetics, 2013, 8, 046012.	1.5	12
167	Energy production and sanitation improvement using microbial fuel cells. Journal of Water Sanitation and Hygiene for Development, 2013, 3, 383-391.	0.7	11
168	Urineâ€"Waste or Resource? The Economic and Social Aspects. Reviews in Advanced Sciences and Engineering, 2013, 2, 192-199.	0.6	6
169	Sub-millilitre Microbial Fuel Cell Power for Soft Robots. Lecture Notes in Computer Science, 2013, , 424-426.	1.0	1
170	Urine utilisation by microbial fuel cells; energy fuel for the future. Physical Chemistry Chemical Physics, 2012, 14, 94-98.	1.3	205
171	Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells. Bioresource Technology, 2012, 118, 615-618.	4.8	49
172	Microbial Fuel Cells for Robotics: Energy Autonomy through Artificial Symbiosis. ChemSusChem, 2012, 5, 1020-1026.	3.6	50
173	Investigating a cascade of seven hydraulically connected microbial fuel cells. Bioresource Technology, 2012, 110, 245-250.	4.8	56
174	Power for Robotic Artificial Muscles. IEEE/ASME Transactions on Mechatronics, 2011, 16, 107-111.	3.7	53
175	Investigating the effects of fluidic connection between microbial fuel cells. Bioprocess and Biosystems Engineering, 2011, 34, 477-484.	1.7	25
176	The overshoot phenomenon as a function of internal resistance in microbial fuel cells. Bioelectrochemistry, 2011, 81, 22-27.	2.4	104
177	Dielectric elastomer pump for artificial organisms. Proceedings of SPIE, 2011, , .	0.8	8
178	Microbial Fuel Cells – Scalability and their Use in Robotics. Modern Aspects of Electrochemistry, 2011, , 239-290.	0.2	9
179	Optimization of bio-inspired multi-segment IPMC cilia. Proceedings of SPIE, 2010, , .	0.8	6
180	Improved energy output levels from small-scale Microbial Fuel Cells. Bioelectrochemistry, 2010, 78, 44-50.	2.4	137

#	Article	IF	CITATIONS
181	Comparative analysis of different polymer materials for the construction of microbial fuel cell stacks. Journal of Biotechnology, 2010, 150, 143-143.	1.9	5
182	Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresource Technology, 2010, 101, 3520-3525.	4.8	192
183	Small Scale Microbial Fuel Cells and Different Ways of Reporting Output. ECS Transactions, 2010, 28, 1-9.	0.3	20
184	A hybrid microbial dielectric elastomer generator for autonomous robots. Proceedings of SPIE, 2010, ,	0.8	4
185	MFCs and Algae. ECS Transactions, 2010, 28, 23-30.	0.3	4
186	Microbial-powered artificial muscles for autonomous robots. , 2009, , .		6
187	Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter. Enzyme and Microbial Technology, 2009, 44, 112-119.	1.6	172
188	Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource Technology, 2009, 100, 5085-5091.	4.8	121
189	Artificial Symbiosis in EcoBots. , 2009, , 185-211.		O
190	Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. International Journal of Energy Research, 2008, 32, 1228-1240.	2.2	293
191	Artificial gills for robots: MFC behaviour in water. Bioinspiration and Biomimetics, 2007, 2, S83-S93.	1.5	26
192	Energetically autonomous robots: Food for thought. Autonomous Robots, 2006, 21, 187-198.	3.2	122
193	Energy accumulation and improved performance in microbial fuel cells. Journal of Power Sources, 2005, 145, 253-256.	4.0	75
194	Comparative study of three types of microbial fuel cell. Enzyme and Microbial Technology, 2005, 37, 238-245.	1.6	247
195	EcoBot-II: An Artificial Agent with a Natural Metabolism. International Journal of Advanced Robotic Systems, 2005, 2, 31.	1.3	45
196	Artificial Metabolism: Towards True Energetic Autonomy in Artificial Life. Lecture Notes in Computer Science, 2003, , 792-799.	1.0	29