Bruno Schuler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7008766/publications.pdf

Version: 2024-02-01

43 papers 3,775 citations

186209
28
h-index

243529 44 g-index

47 all docs

47 docs citations

47 times ranked

3902 citing authors

#	Article	IF	CITATIONS
1	Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. Journal of the American Chemical Society, 2015, 137, 9870-9876.	6.6	545
2	Bond-Order Discrimination by Atomic Force Microscopy. Science, 2012, 337, 1326-1329.	6.0	457
3	Heavy Oil Based Mixtures of Different Origins and Treatments Studied by Atomic Force Microscopy. Energy & Energ	2.5	206
4	Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nature Communications, 2019, 10, 3382.	5.8	196
5	On-surface generation and imaging of arynes by atomic force microscopy. Nature Chemistry, 2015, 7, 623-628.	6.6	176
6	Reversible Bergman cyclization by atomic manipulation. Nature Chemistry, 2016, 8, 220-224.	6.6	169
7	Adsorption Geometry Determination of Single Molecules by Atomic Force Microscopy. Physical Review Letters, 2013, 111, 106103.	2.9	162
8	Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Applied Physics Letters, 2013, 102, .	1.5	141
9	Atomic Force Microscopy for Molecular Structure Elucidation. Angewandte Chemie - International Edition, 2018, 57, 3888-3908.	7.2	135
10	Large Spin-Orbit Splitting of Deep In-Gap Defect States of Engineered Sulfur Vacancies in Monolayer <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>WS</mml:mi></mml:mrow><mml:mrow><mplysical 076801.<="" 123,="" 2019,="" letters,="" review="" td=""><td>ml:mh>2<</td><td>/mfil:mn></td></mplysical></mml:mrow></mml:msub></mml:mrow></mml:math>	ml:mh>2<	/mfil:mn>
11	Characterizing aliphatic moieties in hydrocarbons with atomic force microscopy. Chemical Science, 2017, 8, 2315-2320.	3.7	102
12	Overview of Asphaltene Nanostructures and Thermodynamic Applications. Energy & Dels, 2020, 34, 15082-15105.	2.5	101
13	From Perylene to a 22â€Ring Aromatic Hydrocarbon in Oneâ€Pot. Angewandte Chemie - International Edition, 2014, 53, 9004-9006.	7.2	94
14	The role of chalcogen vacancies for atomic defect emission in MoS2. Nature Communications, 2021, 12, 3822.	5.8	94
15	A Combined Atomic Force Microscopy and Computational Approach for the Structural Elucidation of Breitfussin A and B: Highly Modified Halogenated Dipeptides from <i>Thuiaria breitfussi</i> Angewandte Chemie - International Edition, 2012, 51, 12238-12241.	7.2	92
16	How Substitutional Point Defects in Two-Dimensional WS ₂ Induce Charge Localization, Spin–Orbit Splitting, and Strain. ACS Nano, 2019, 13, 10520-10534.	7.3	86
17	The Electric Field of CO Tips and Its Relevance for Atomic Force Microscopy. Nano Letters, 2016, 16, 1974-1980.	4. 5	79
18	Contrast Formation in Kelvin Probe Force Microscopy of Single π-Conjugated Molecules. Nano Letters, 2014, 14, 3342-3346.	4.5	77

#	Article	IF	Citations
19	Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nature Nanotechnology, 2018, 13, 376-380.	15.6	77
20	Image Distortions of a Partially Fluorinated Hydrocarbon Molecule in Atomic Force Microscopy with Carbon Monoxide Terminated Tips. Nano Letters, 2014, 14, 6127-6131.	4.5	73
21	Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips. Physical Review B, 2014, 90, .	1.1	59
22	Electrically driven photon emission from individual atomic defects in monolayer WS ₂ . Science Advances, 2020, 6, .	4.7	53
23	Atomistic Positioning of Defects in Helium Ion Treated Single-Layer MoS ₂ . Nano Letters, 2020, 20, 4437-4444.	4.5	48
24	Multimodal spectromicroscopy of monolayer WS ₂ enabled by ultra-clean van der Waals epitaxy. 2D Materials, 2018, 5, 045010.	2.0	40
25	Controllable pâ€Type Doping of 2D WSe ₂ via Vanadium Substitution. Advanced Functional Materials, 2021, 31, 2105252.	7.8	40
26	The Synthesis and STM/AFM Imaging of â€~Olympicene' Benzo[<i>cd</i>]pyrenes. Chemistry - A European Journal, 2015, 21, 2011-2018.	1.7	39
27	Understanding the Effects of Sample Preparation on the Chemical Structures of Petroleum Imaged with Noncontact Atomic Force Microscopy. Industrial & Engineering Chemistry Research, 2018, 57, 15935-15941.	1.8	38
28	Scalable Substitutional Reâ€Doping and its Impact on the Optical and Electronic Properties of Tungsten Diselenide. Advanced Materials, 2020, 32, e2005159.	11.1	32
29	Atomic Force Microscopy Identifying Fuel Pyrolysis Products and Directing the Synthesis of Analytical Standards. Journal of the American Chemical Society, 2018, 140, 8156-8161.	6.6	27
30	Resonant and bound states of charged defects in two-dimensional semiconductors. Physical Review B, 2020, 101, .	1.1	23
31	Identical Binding Energies and Work Functions for Distinct Adsorption Structures: Olympicenes on the Cu(111) Surface. Journal of Physical Chemistry Letters, 2016, 7, 1022-1027.	2.1	22
32	Intentional carbon doping reveals CH as an abundant charged impurity in nominally undoped synthetic WS ₂ and WSe ₂ . 2D Materials, 2020, 7, 031003.	2.0	22
33	The Role of Methyl Groups in the Early Stage of Thermal Polymerization of Polycyclic Aromatic Hydrocarbons Revealed by Molecular Imaging. Energy & Energy & 2021, 35, 2224-2233.	2.5	21
34	Spin-dependent vibronic response of a carbon radical ion in two-dimensional WS2. Nature Communications, 2021, 12, 7287.	5.8	15
35	Effect of electron-phonon interaction on the formation of one-dimensional electronic states in coupled Cl vacancies. Physical Review B, 2015, 91, .	1.1	14
36	Rasterkraftmikroskopie für die molekulare StrukturaufklÃ r ung. Angewandte Chemie, 2018, 130, 3950-3972.	1.6	12

3

#	Article	IF	CITATIONS
37	Charge-Induced Structural Changes in a Single Molecule Investigated by Atomic Force Microscopy. Physical Review Letters, 2019, 123, 066001.	2.9	11
38	Engineering and probing atomic quantum defects in 2D semiconductors: A perspective. Applied Physics Letters, 2021, 119, .	1.5	11
39	Toggling the Local Electric Field with an Embedded Adatom Switch. Nano Letters, 2015, 15, 5564-5568.	4.5	5
40	Atomic Resolution on Molecules with Functionalized Tips. Nanoscience and Technology, 2015, , 223-246.	1.5	5
41	Chemische Bindungen visualisiert. Physik in Unserer Zeit, 2013, 44, 6-7.	0.0	3
42	Addressing Long-Standing Chemical Challenges by AFM with Functionalized Tips. Advances in Atom and Single Molecule Machines, 2018, , 209-227.	0.0	2
43	Chapter 13. Prospects and Challenges in Molecular Structure Identification by Atomic Force Microscopy. , 2015, , 306-320.		2