
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7008714/publications.pdf Version: 2024-02-01

COPD IMMES FISHELL

#	Article	IF	CITATIONS
1	Single-cell delineation of lineage and genetic identity in the mouse brain. Nature, 2022, 601, 404-409.	27.8	93
2	Basic science under threat: Lessons from the Skirball Institute. Cell, 2022, 185, 755-758.	28.9	0
3	A versatile viral toolkit for functional discovery in the nervous system. Cell Reports Methods, 2022, , 100225.	2.9	6
4	In SARS-CoV-2, astrocytes are in it for the long haul. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
5	Alternating sources of perisomatic inhibition during behavior. Neuron, 2021, 109, 997-1012.e9.	8.1	67
6	FoxG1 regulates the formation of cortical GABAergic circuit during an early postnatal critical period resulting in autism spectrum disorder-like phenotypes. Nature Communications, 2021, 12, 3773.	12.8	30
7	A transient postnatal quiescent period precedes emergence of mature cortical dynamics. ELife, 2021, 10,	6.0	11
8	GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell, 2021, 184, 4048-4063.e32.	28.9	142
9	Postnatal Sox6 Regulates Synaptic Function of Cortical Parvalbumin-Expressing Neurons. Journal of Neuroscience, 2021, 41, 8876-8886.	3.6	10
10	Bottom-up inputs are required for establishment of top-down connectivity onto cortical layer 1 neurogliaform cells. Neuron, 2021, 109, 3473-3485.e5.	8.1	30
11	Genetic and epigenetic coordination of cortical interneuron development. Nature, 2021, 597, 693-697.	27.8	56
12	The organization and development of cortical interneuron presynaptic circuits are area specific. Cell Reports, 2021, 37, 109993.	6.4	25
13	Interneuron Types as Attractors and Controllers. Annual Review of Neuroscience, 2020, 43, 1-30.	10.7	127
14	Innovations present in the primate interneuron repertoire. Nature, 2020, 586, 262-269.	27.8	206
15	Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nature Neuroscience, 2020, 23, 1629-1636.	14.8	133
16	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	14.8	183
17	Neuronal Inactivity Co-opts LTP Machinery to Drive Potassium Channel Splicing and Homeostatic Spike Widening. Cell, 2020, 181, 1547-1565.e15.	28.9	44
18	Mining the jewels of the cortex's crowning mystery. Current Opinion in Neurobiology, 2020, 63, 154-161.	4.2	22

#	Article	IF	CITATIONS
19	The generation of cortical interneurons. , 2020, , 461-479.		3
20	Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nature Neuroscience, 2020, 23, 520-532.	14.8	115
21	Paradoxical network excitation by glutamate release from VGluT3+ GABAergic interneurons. ELife, 2020, 9, .	6.0	25
22	Hippocampal inputs engage CCK+ interneurons to mediate endocannabinoid-modulated feed-forward inhibition in the prefrontal cortex. ELife, 2020, 9, .	6.0	19
23	Cellular birthdate predicts laminar and regional cholinergic projection topography in the forebrain. ELife, 2020, 9, .	6.0	20
24	Preserving Inhibition during Developmental Hearing Loss Rescues Auditory Learning and Perception. Journal of Neuroscience, 2019, 39, 8347-8361.	3.6	26
25	Interneurons: Learning on the Job. Neuron, 2019, 102, 905-907.	8.1	1
26	Four Unique Interneuron Populations Reside in Neocortical Layer 1. Journal of Neuroscience, 2019, 39, 125-139.	3.6	131
27	Activity of Prefrontal Neurons Predict Future Choices during Gambling. Neuron, 2019, 101, 152-164.e7.	8.1	26
28	Hierarchical genetic interactions between FOXG1 and LHX2 regulate the formation of the cortical hem in the developing telencephalon. Development (Cambridge), 2018, 145, .	2.5	42
29	Developmental diversification of cortical inhibitory interneurons. Nature, 2018, 555, 457-462.	27.8	393
30	Activity Regulates Cell Death within Cortical Interneurons through a Calcineurin-Dependent Mechanism. Cell Reports, 2018, 22, 1695-1709.	6.4	80
31	Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons. Neuron, 2018, 100, 846-859.e7.	8.1	92
32	Layer I Interneurons Sharpen Sensory Maps during Neonatal Development. Neuron, 2018, 99, 98-116.e7.	8.1	72
33	Developing neurons are innately inclined to learn on the job. Nature, 2018, 560, 39-40.	27.8	3
34	GABAergic Neurons in Ferret Visual Cortex Participate in Functionally Specific Networks. Neuron, 2017, 93, 1058-1065.e4.	8.1	71
35	FGF-Dependent, Context-Driven Role for FRS Adapters in the Early Telencephalon. Journal of Neuroscience, 2017, 37, 5690-5698.	3.6	10
36	Genetic and activity-dependent mechanisms underlying interneuron diversity. Nature Reviews Neuroscience, 2017, 18, 299-309.	10.2	248

#	Article	IF	CITATIONS
37	Heterotopic Transplantations Reveal Environmental Influences on Interneuron Diversity and Maturation. Cell Reports, 2017, 21, 721-731.	6.4	25
38	Addendum: A viral strategy for targeting and manipulating interneurons across vertebrate species. Nature Neuroscience, 2017, 20, 1033-1033.	14.8	5
39	Cortical interneuron specification: the juncture of genes, time and geometry. Current Opinion in Neurobiology, 2017, 42, 17-24.	4.2	102
40	What is memory? The present state of the engram. BMC Biology, 2016, 14, 40.	3.8	277
41	Lineage Is a Poor Predictor of Interneuron Positioning within the Forebrain. Neuron, 2016, 92, 45-51.	8.1	25
42	Human brains teach us a surprising lesson. Science, 2016, 354, 38-39.	12.6	1
43	A viral strategy for targeting and manipulating interneurons across vertebrate species. Nature Neuroscience, 2016, 19, 1743-1749.	14.8	396
44	Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops. Neuron, 2016, 89, 1131-1156.	8.1	159
45	Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron, 2016, 89, 521-535.	8.1	154
46	Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate. Cell Reports, 2015, 13, 1090-1095.	6.4	78
47	Sensory inputs control the integration of neurogliaform interneurons into cortical circuits. Nature Neuroscience, 2015, 18, 393-401.	14.8	98
48	Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination. Nature, 2015, 526, 448-452.	27.8	135
49	Clonally Related Forebrain Interneurons Disperse Broadly across Both Functional Areas and Structural Boundaries. Neuron, 2015, 87, 989-998.	8.1	99
50	<i>Prox1</i> Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. Journal of Neuroscience, 2015, 35, 12869-12889.	3.6	104
51	miRNAs are Essential for the Survival and Maturation of Cortical Interneurons. Cerebral Cortex, 2015, 25, 1842-1857.	2.9	23
52	Astrocyte activation is suppressed in both normal and injured brain by FGF signaling. Proceedings of the United States of America, 2014, 111, E2987-95.	7.1	118
53	Reverse Pharmacogenetic Modulation of the Nucleus Accumbens Reduces Ethanol Consumption in a Limited Access Paradigm. Neuropsychopharmacology, 2014, 39, 283-290.	5.4	53
54	A developmental cell-type switch in cortical interneurons leads to a selective defect in cortical oscillations. Nature Communications, 2014, 5, 5333.	12.8	41

#	Article	IF	CITATIONS
55	Continuous Postnatal Neurogenesis Contributes to Formation of the Olfactory Bulb Neural Circuits and Flexible Olfactory Associative Learning. Journal of Neuroscience, 2014, 34, 5788-5799.	3.6	101
56	Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature, 2014, 511, 236-240.	27.8	158
57	Inhibition: synapses, neurons and circuits. Current Opinion in Neurobiology, 2014, 26, v-vii.	4.2	7
58	Interneuron cell types are fit to function. Nature, 2014, 505, 318-326.	27.8	919
59	Subtype-selective Electroporation of Cortical Interneurons. Journal of Visualized Experiments, 2014, , e51518.	0.3	8
60	Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature, 2013, 500, 458-462.	27.8	297
61	The Neuron Identity Problem: Form Meets Function. Neuron, 2013, 80, 602-612.	8.1	86
62	A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nature Neuroscience, 2013, 16, 1662-1670.	14.8	638
63	A Modular Gain-of-Function Approach to Generate Cortical Interneuron Subtypes from ES Cells. Neuron, 2013, 80, 1145-1158.	8.1	40
64	Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1. Neuron, 2013, 77, 70-82.	8.1	112
65	A Foot in the Door: How the Chromatin Modifier Brg1 and Pax6 Jointly Potentiate Adult Neurogenesis. Cell Stem Cell, 2013, 13, 373-374.	11.1	1
66	New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 2013, 14, 202-216.	10.2	707
67	Ca _V 2.1 ablation in cortical interneurons selectively impairs fastâ€spiking basket cells and causes generalized seizures. Annals of Neurology, 2013, 74, 209-222.	5.3	95
68	After the deluge. Nature, 2013, 496, 421-422.	27.8	4
69	Specification of GABAergic Neocortical Interneurons. , 2013, , 89-126.		8
70	Satb1 Is an Activity-Modulated Transcription Factor Required for the Terminal Differentiation and Connectivity of Medial Ganglionic Eminence-Derived Cortical Interneurons. Journal of Neuroscience, 2012, 32, 17690-17705.	3.6	122
71	Dynamic Changes in Interneuron Morphophysiological Properties Mark the Maturation of Hippocampal Network Activity. Journal of Neuroscience, 2012, 32, 6688-6698.	3.6	32
72	Dynamic FoxG1 Expression Coordinates the Integration of Multipolar Pyramidal Neuron Precursors into the Cortical Plate. Neuron, 2012, 74, 1045-1058.	8.1	126

#	Article	IF	CITATIONS
73	The origin of neocortical nitric oxide synthase-expressing inhibitory neurons. Frontiers in Neural Circuits, 2012, 6, 44.	2.8	34
74	Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nature Neuroscience, 2012, 15, 700-702.	14.8	413
75	Mechanisms of Inhibition within the Telencephalon: "Where the Wild Things Are― Annual Review of Neuroscience, 2011, 34, 535-567.	10.7	205
76	Division-Coupled Astrocytic Differentiation and Age-Related Depletion of Neural Stem Cells in the Adult Hippocampus. Cell Stem Cell, 2011, 8, 566-579.	11.1	768
77	Pioneer GABA Cells Comprise a Subpopulation of Hub Neurons in the Developing Hippocampus. Neuron, 2011, 71, 695-709.	8.1	133
78	A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex. Neuron, 2011, 71, 995-1013.	8.1	1,659
79	A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex. Neuron, 2011, 72, 1091.	8.1	21
80	Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature, 2011, 472, 351-355.	27.8	234
81	Introduction to the Special Issue on Cortical Interneurons. Developmental Neurobiology, 2011, 71, 1-1.	3.0	0
82	Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Developmental Neurobiology, 2011, 71, 45-61.	3.0	1,151
83	Neural circuits look forward. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16137-16138.	7.1	1
84	GABAergic Interneuron Lineages Selectively Sort into Specific Cortical Layers during Early Postnatal Development. Cerebral Cortex, 2011, 21, 845-852.	2.9	179
85	Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala. Neural Development, 2010, 5, 14.	2.4	52
86	A silver lining to stroke: does ischemia generate new cortical interneurons?. Nature Neuroscience, 2010, 13, 145-146.	14.8	8
87	Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells. Journal of Neuroscience, 2010, 30, 2165-2176.	3.6	153
88	The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors. Journal of Neuroscience, 2010, 30, 16796-16808.	3.6	511
89	Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons. Journal of Neuroscience, 2010, 30, 1582-1594.	3.6	478
90	Sonic hedgehog functions through dynamic changes in temporal competence in the developing forebrain. Current Opinion in Genetics and Development, 2010, 20, 391-399.	3.3	97

#	Article	IF	CITATIONS
91	Inhibition as a Transplant-Mediated Therapy: A New Paradigm for Treating Parkinson's?. Cell Stem Cell, 2010, 6, 184-185.	11.1	1
92	Characterization of Nkx6-2-Derived Neocortical Interneuron Lineages. Cerebral Cortex, 2009, 19, i1-i10.	2.9	263
93	<i>Emx1</i> -Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala. Journal of Neuroscience, 2009, 29, 15933-15946.	3.6	68
94	The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development. Neuron, 2009, 63, 466-481.	8.1	194
95	Chapter 3 The Developmental Integration of Cortical Interneurons into a Functional Network. Current Topics in Developmental Biology, 2009, 87, 81-118.	2.2	191
96	Math1: Waiting to Inhale. Neuron, 2009, 64, 293-295.	8.1	1
97	Choices in neuroscience careers. Nature Reviews Neuroscience, 2008, 9, 401-405.	10.2	0
98	Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 2008, 9, 557-568.	10.2	1,314
99	The genetics of early telencephalon patterning: some assembly required. Nature Reviews Neuroscience, 2008, 9, 678-685.	10.2	323
100	Medulloblastoma Can Be Initiated by Deletion of Patched in Lineage-Restricted Progenitors or Stem Cells. Cancer Cell, 2008, 14, 135-145.	16.8	606
101	Pyramidal Neurons Grow Up and Change Their Mind. Neuron, 2008, 57, 333-338.	8.1	51
102	The Requirement of Nkx2-1 in the Temporal Specification of Cortical Interneuron Subtypes. Neuron, 2008, 59, 722-732.	8.1	304
103	Cortex Shatters the Glass Ceiling. Cell Stem Cell, 2008, 3, 472-474.	11.1	9
104	Genetic approaches identify adult pituitary stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6332-6337.	7.1	176
105	Gene Expression in Cortical Interneuron Precursors is Prescient of their Mature Function. Cerebral Cortex, 2008, 18, 2306-2317.	2.9	120
106	The Distinct Temporal Origins of Olfactory Bulb Interneuron Subtypes. Journal of Neuroscience, 2008, 28, 3966-3975.	3.6	244
107	Mosaic Removal of Hedgehog Signaling in the Adult SVZ Reveals That the Residual Wild-Type Stem Cells Have a Limited Capacity for Self-Renewal. Journal of Neuroscience, 2007, 27, 14248-14259.	3.6	149
108	Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic <i>Olig2</i> -Expressing Precursors. Journal of Neuroscience, 2007, 27, 7786-7798.	3.6	356

#	Article	IF	CITATIONS
109	Hedgehog Signaling in the Subventricular Zone Is Required for Both the Maintenance of Stem Cells and the Migration of Newborn Neurons. Journal of Neuroscience, 2007, 27, 5936-5947.	3.6	141
110	The Role of <i>Foxg1</i> and Dorsal Midline Signaling in the Generation of Cajal-Retzius Subtypes. Journal of Neuroscience, 2007, 27, 11103-11111.	3.6	121
111	Perspectives on the developmental origins of cortical interneuron diversity. Novartis Foundation Symposium, 2007, 288, 21-35; discussion 35-44, 96-8.	1.1	21
112	Functional genomics of early cortex patterning. Genome Biology, 2006, 7, 202.	9.6	7
113	Building Bridges to the Cortex. Cell, 2006, 125, 24-27.	28.9	14
114	Letter to the Editor. Developmental Neuroscience, 2006, 28, 517-517.	2.0	2
115	Adult cortical neurogenesis: nuanced, negligible or nonexistent?. Nature Neuroscience, 2006, 9, 1086-1088.	14.8	10
116	Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nature Reviews Neuroscience, 2006, 7, 772-783.	10.2	375
117	Directing neuron-specific transgene expression in the mouse CNS. Current Opinion in Neurobiology, 2006, 16, 577-584.	4.2	46
118	Loss of Notch Activity in the Developing Central Nervous System Leads to Increased Cell Death. Developmental Neuroscience, 2006, 28, 49-57.	2.0	59
119	Removal of Pax6 Partially Rescues the Loss of Ventral Structures in Shh Null Mice. Cerebral Cortex, 2006, 16, i96-i102.	2.9	24
120	Cell Migration along the Lateral Cortical Stream to the Developing Basal Telencephalic Limbic System. Journal of Neuroscience, 2006, 26, 11562-11574.	3.6	87
121	Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development (Cambridge), 2005, 132, 4497-4508.	2.5	116
122	Notch signaling coordinates the patterning of striatal compartments. Development (Cambridge), 2005, 132, 4247-4258.	2.5	77
123	Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Genes and Development, 2005, 19, 1028-1033.	5.9	196
124	Cortical Development: New Concepts. Neuron, 2005, 46, 361-362.	8.1	17
125	Math1 Is Expressed in Temporally Discrete Pools of Cerebellar Rhombic-Lip Neural Progenitors. Neuron, 2005, 48, 17-24.	8.1	523
126	The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype. Neuron, 2005, 48, 591-604.	8.1	505

#	Article	IF	CITATIONS
127	<i>Foxg1</i> Suppresses Early Cortical Cell Fate. Science, 2004, 303, 56-59.	12.6	339
128	Fibroblast Growth Factor Receptor Signaling Promotes Radial Glial Identity and Interacts with Notch1 Signaling in Telencephalic Progenitors. Journal of Neuroscience, 2004, 24, 9497-9506.	3.6	164
129	Temporal requirement for hedgehog signaling in ventral telencephalic patterning. Development (Cambridge), 2004, 131, 5031-5040.	2.5	146
130	Neural Stem Cells: Progenitors or Panacea?. Developmental Neuroscience, 2004, 26, 82-92.	2.0	11
131	Developmental regulation of EVF-1, a novel non-coding RNA transcribed upstream of the mouse Dlx6 gene. Gene Expression Patterns, 2004, 4, 407-412.	0.8	49
132	Radial Clia Serve as Neuronal Progenitors in All Regions of the Central Nervous System. Neuron, 2004, 41, 881-890.	8.1	707
133	Neurons from radial glia: the consequences of asymmetric inheritance. Current Opinion in Neurobiology, 2003, 13, 34-41.	4.2	211
134	Sonic Hedgehog Is Required for Progenitor Cell Maintenance in Telencephalic Stem Cell Niches. Neuron, 2003, 39, 937-950.	8.1	651
135	Sonic Hedgehog Is Required for Progenitor Cell Maintenance in Telencephalic Stem Cell Niches. Neuron, 2003, 40, 189-190.	8.1	9
136	Combinatorial function of the homeodomain proteins Nkx2.1 and Gsh2 in ventral telencephalic patterning. Development (Cambridge), 2003, 130, 4895-4906.	2.5	110
137	Dlx2 Progenitor Migration in Wild Type and Nkx2.1 Mutant Telencephalon. Cerebral Cortex, 2003, 13, 895-903.	2.9	44
138	Hedgehog patterns midbrain ARChitecture. Trends in Neurosciences, 2002, 25, 10-11.	8.6	18
139	The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nature Neuroscience, 2002, 5, 1279-1287.	14.8	511
140	Parsing the prosencephalon. Nature Reviews Neuroscience, 2002, 3, 943-951.	10.2	167
141	The Role of Notch in Promoting Glial and Neural Stem Cell Fates. Annual Review of Neuroscience, 2002, 25, 471-490.	10.7	542
142	Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 and Hedgehog signaling. Development (Cambridge), 2002, 129, 4963-4974.	2.5	235
143	Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 and Hedgehog signaling. Development (Cambridge), 2002, 129, 4963-74.	2.5	96
144	Calcium-Dependent Adhesion Is Necessary for the Maintenance of Prosomeres. Developmental Biology, 2001, 233, 80-94.	2.0	11

GORD JAMES FISHELL

#	Article	IF	CITATIONS
145	An Acylatable Residue of Hedgehog Is Differentially Required in Drosophila and Mouse Limb Development. Developmental Biology, 2001, 233, 122-136.	2.0	98
146	Radial Glial Cell Line C6-R Integrates Preferentially in Adult White Matter and Facilitates Migration of Coimplanted Neurons in Vivo. Experimental Neurology, 2001, 168, 310-322.	4.1	13
147	Telencephalic Neural Progenitors Appear To Be Restricted to Regional and Glial Fates before the Onset of Neurogenesis. Journal of Neuroscience, 2001, 21, 6772-6781.	3.6	120
148	Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nature Neuroscience, 2001, 4, 1177-1182.	14.8	280
149	N-terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons. Development (Cambridge), 2001, 128, 2351-2363.	2.5	107
150	In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development (Cambridge), 2001, 128, 3759-3771.	2.5	626
151	Radial Glial Identity Is Promoted by Notch1 Signaling in the Murine Forebrain. Neuron, 2000, 26, 395-404.	8.1	674
152	A method for rapid gain-of-function studies in the mouse embryonic nervoussystem. Nature Neuroscience, 1999, 2, 812-819.	14.8	173
153	BMPs: time to murder and create?. Nature Neuroscience, 1999, 2, 301-303.	14.8	7
154	Cooperation of intrinsic and extrinsic signals in the elaboration of regional identity in the posterior cerebral cortex. Current Biology, 1998, 8, 459-463.	3.9	70
155	Telencephalic progenitors maintain anteroposterior identities cell autonomously. Current Biology, 1998, 8, 987-S2.	3.9	39
156	Transplantation as a tool to study progenitors within the vertebrate nervous system. Journal of Neurobiology, 1998, 36, 152-161.	3.6	51
157	Generation of a radial-like glial cell line. , 1998, 37, 291-304.		21
158	Transplantation as a tool to study progenitors within the vertebrate nervous system. Journal of Neurobiology, 1998, 36, 152-161.	3.6	3
159	Postnatal mouse subventricular zone neuronal precursors can migrate and differentiate within multiple levels of the developing neuraxis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14832-14836.	7.1	98
160	Regionalization in the mammalian telencephalon. Current Opinion in Neurobiology, 1997, 7, 62-69.	4.2	40
161	A Short-Range Signal Restricts Cell Movement between Telencephalic Proliferative Zones. Journal of Neuroscience, 1997, 17, 9194-9203.	3.6	29
162	Disruption of the MacMARCKS gene prevents cranial neural tube closure and results in anencephaly Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6275-6279.	7.1	90

#	Article	IF	CITATIONS
163	Pattern Formation in the Mammalian Forebrain: Striatal Patch and Matrix Neurons Intermix Prior to Compartment Formation. European Journal of Neuroscience, 1995, 7, 1210-1219.	2.6	38
164	Tracking fluorescently labeled neurons in developing brain. FASEB Journal, 1995, 9, 324-334.	0.5	16
165	Dispersion of neural progenitors within the germinal zones of the forebrain. Nature, 1993, 362, 636-638.	27.8	272
166	Embryonic lesions of the substantia nigra prevent the patchy expression of opiate receptors, but not the segregation of patch and matrix compartment neurons, in the developing rat striatum. Developmental Brain Research, 1992, 66, 141-145.	1.7	27
167	Pattern formation in the striatum: Neurons with early projections to the substantia nigra survive the cell death period. Journal of Comparative Neurology, 1991, 312, 33-42.	1.6	67
168	The Development of Striatal Compartmentalization: The Role of Mitotic and Postmitotic Events. Advances in Behavioral Biology, 1991, , 13-20.	0.2	5
169	Neuronal lineages in chimeric mouse forebrain are segregated between compartments and in the rostrocaudal and radial planes. Developmental Biology, 1990, 141, 70-83.	2.0	46
170	Pattern formation in the striatum: developmental changes in the distribution of striatonigral projections. Developmental Brain Research, 1989, 45, 239-255.	1.7	39
171	The development of laterality in the forebrain projections of midline thalamic cell groups in the rat. Developmental Brain Research, 1987, 35, 275-282.	1.7	17
172	Neuronal birthdate underlies the development of striatal compartments. Brain Research, 1987, 401, 155-161.	2.2	255
173	Pattern formation in the striatum: developmental changes in the distribution of striatonigral neurons. Journal of Neuroscience, 1987, 7, 1969-1978.	3.6	153
174	The Development of Striatal Compartments: From Proliferation to Patches. Advances in Behavioral Biology, 1987, , 81-98.	0.2	10
175	Bottom-Up Inputs are Required for the Establishment of Top-Down Connectivity Onto Cortical Layer 1 Neurogliaform Cells. SSRN Electronic Journal, 0, , .	0.4	0
176	Perspectives on the Developmental Origins of Cortical Interneuron Diversity. Novartis Foundation Symposium, 0, , 21-44.	1.1	29
177	Non-Canonical Wnt-Signaling through <i>Ryk</i> Regulates the Generation of Somatostatin- and Parvalbumin-Expressing Cortical Interneurons. SSRN Electronic Journal, 0, , .	0.4	0
178	GABA-Receptive Microglia Selectively Sculpt Developing Inhibitory Circuits. SSRN Electronic Journal, 0, , .	0.4	0