List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7008705/publications.pdf Version: 2024-02-01

Τιίνα Ηριίδα

#	Article	IF	CITATIONS
1	Prognostic significance of incidental suspected transthyretin amyloidosis on routine bone scintigraphy. Journal of Nuclear Cardiology, 2022, 29, 1021-1029.	1.4	12
2	Complications of implantable cardioverter-defibrillator treatment in arrhythmogenic right ventricular cardiomyopathy. Europace, 2022, 24, 306-312.	0.7	12
3	Genotype–phenotype correlation in arrhythmogenic right ventricular cardiomyopathy—risk of arrhythmias and heart failure. Journal of Medical Genetics, 2022, 59, 858-864.	1.5	13
4	Prognostic Value of 99mTc-HMDP Scintigraphy in Elderly Patients With Chronic Heart Failure. Heart Lung and Circulation, 2022, 31, 629-637.	0.2	4
5	MYH7 Genotype–Phenotype Correlation in a Cohort of Finnish Patients. Neurology International, 2022, 12, 122-132.	0.2	3
6	Differences between familial and sporadic dilated cardiomyopathy: ESC EORP Cardiomyopathy & Myocarditis registry. ESC Heart Failure, 2021, 8, 95-105.	1.4	23
7	Biallelic loss-of-function in NRAP is a cause of recessive dilated cardiomyopathy. PLoS ONE, 2021, 16, e0245681.	1.1	8
8	Diagnostic yield of genetic testing in a heterogeneous cohort of 1376 HCM patients. BMC Cardiovascular Disorders, 2021, 21, 126.	0.7	18
9	GRINL1A Complex Transcription Unit Containing GCOM1, MYZAP, and POLR2M Genes Associates with Fully Penetrant Recessive Dilated Cardiomyopathy. Frontiers in Genetics, 2021, 12, 786705.	1.1	9
10	ESC EORP Cardiomyopathy Registry: realâ€life practice of genetic counselling and testing in adult cardiomyopathy patients. ESC Heart Failure, 2020, 7, 3013-3021.	1.4	19
11	Pregnancies, ventricular arrhythmias, and substrate progression in women with arrhythmogenic right ventricular cardiomyopathy in the Nordic ARVC Registry. Europace, 2020, 22, 1873-1879.	0.7	10
12	Modeling of LMNA-Related Dilated Cardiomyopathy Using Human Induced Pluripotent Stem Cells. Cells, 2019, 8, 594.	1.8	42
13	CMR derived left ventricular septal convexity in carriers of the hypertrophic cardiomyopathy-causing MYBPC3-Q1061X mutation. Scientific Reports, 2019, 9, 5960.	1.6	3
14	Relevance of Titin Missense and Non-Frameshifting Insertions/Deletions Variants in Dilated Cardiomyopathy. Scientific Reports, 2019, 9, 4093.	1.6	30
15	Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomyopathy. ESC Heart Failure, 2019, 6, 436-445.	1.4	26
16	Fibrosis and wall thickness affect ventricular repolarization dynamics in hypertrophic cardiomyopathy. Annals of Noninvasive Electrocardiology, 2018, 23, e12582.	0.5	7
17	Novel electrocardiographic features in carriers of hypertrophic cardiomyopathy causing sarcomeric mutations. Journal of Electrocardiology, 2018, 51, 983-989.	0.4	3
18	Increased ventilatory response to exercise in symptomatic and asymptomatic <i>LMNA</i> mutation carriers: a followâ€up study. Clinical Physiology and Functional Imaging, 2017, 37, 8-16.	0.5	6

#	Article	IF	CITATIONS
19	Clinical disease presentation and ECG characteristics of <i>LMNA</i> mutation carriers. Open Heart, 2017, 4, e000474.	0.9	26
20	Cardiovascular magnetic resonance of mitral valve length in hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 33.	1.6	16
21	Deleterious assembly of mutant p.S143P lamin A/C causes ER stress in familial dilated cardiomyopathy. Journal of Cell Science, 2016, 129, 2732-43.	1.2	25
22	FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology, 2016, 87, 2290-2299.	1.5	167
23	Left ventricular mechanical dispersion is associated with nonsustained ventricular tachycardia in hypertrophic cardiomyopathy. Annals of Medicine, 2016, 48, 417-427.	1.5	19
24	Cardiovascular magnetic resonance findings in patients with PRKAG2 gene mutations. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 89.	1.6	35
25	The Metabolome in Finnish Carriers of the MYBPC3-Q1061X Mutation for Hypertrophic Cardiomyopathy. PLoS ONE, 2015, 10, e0134184.	1.1	18
26	Genetics and genotype–phenotype correlations in Finnish patients with dilated cardiomyopathy. European Heart Journal, 2015, 36, 2327-2337.	1.0	130
27	A new common mutation in the cardiac beta-myosin heavy chain gene in Finnish patients with hypertrophic cardiomyopathy. Annals of Medicine, 2014, 46, 424-429.	1.5	13
28	2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. European Heart Journal, 2014, 35, 2733-2779.	1.0	3,469
29	Triage strategy for urgent management of cardiac tamponade: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 2014, 35, 2279-2284.	1.0	154
30	Use of Home Telemonitoring to Support Multidisciplinary Care of Heart Failure Patients in Finland: Randomized Controlled Trial. Journal of Medical Internet Research, 2014, 16, e282.	2.1	97
31	Two founder mutations in the alpha-tropomyosin and the cardiac myosin-binding protein C genes are common causes of hypertrophic cardiomyopathy in the Finnish population. Annals of Medicine, 2013, 45, 85-90.	1.5	37
32	Lamin A/C Mutation Affecting Primarily the Right Side of the Heart. Neurology International, 2013, 3, e1.	0.2	2
33	Characteristics of Atrial Fibrillation and Comorbidities in Familial Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2013, 24, 768-774.	0.8	6
34	Population-prevalent desmosomal mutations predisposing to arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm, 2011, 8, 1214-1221.	0.3	49
35	Serum Lipidomics Meets Cardiac Magnetic Resonance Imaging: Profiling of Subjects at Risk of Dilated Cardiomyopathy. PLoS ONE, 2011, 6, e15744.	1.1	28
36	Late gadolinium enhanced cardiovascular magnetic resonance of lamin A/C gene mutation related dilated cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2011, 13, 30.	1.6	94

#	Article	IF	CITATIONS
37	Description of A/C gene mutation related dilated cardiomyopathy with gadolinium- enhanced magnetic resonance imaging. Journal of Cardiovascular Magnetic Resonance, 2011, 13, .	1.6	0
38	Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 2010, 31, 2715-2726.	1.0	408
39	Pregnancy and childbirth in carriers of the lamin A/Câ€gene mutation. European Journal of Heart Failure, 2010, 12, 630-633.	2.9	12
40	Searching for Linear Dependencies between Heart Magnetic Resonance Images and Lipid Profiles. Lecture Notes in Computer Science, 2010, , 232-243.	1.0	0
41	The Need for Comprehensive Cardiac and Neurologic Assessment of Lamin A/C Mutation Carriers. Radiology, 2009, 251, 305-306.	3.6	0
42	2069 Assessment of genetic dilated cardiomyopathy in LMNA-mutation carriers by cardiac MRI. Journal of Cardiovascular Magnetic Resonance, 2008, 10, .	1.6	0
43	Electrocardiographic ventricular repolarization during cardiovascular autonomic function testing in patients with arrhythmogenic right ventricular cardiomyopathy. Scandinavian Cardiovascular Journal, 2008, 42, 375-382.	0.4	3
44	Early Familial Dilated Cardiomyopathy: Identification with Determination of Disease State Parameter from Cine MR Image Data. Radiology, 2008, 249, 88-96.	3.6	21
45	Characterization of familial and sporadic arrhythmogenic right ventricular cardiomyopathy in Finland. Annals of Medicine, 2007, 39, 312-318.	1.5	1
46	Screening of tumor necrosis factor receptor-associated factor 6 as a candidate gene for inflammatory bowel disease. Scandinavian Journal of Gastroenterology, 2006, 41, 424-429.	0.6	6
47	Hereditary hemochromatosis gene (HFE) mutations C282Y, H63D and S65C in patients with idiopathic dilated cardiomyopathy. European Journal of Heart Failure, 2005, 7, 103-108.	2.9	17
48	A novel mutation, Ser143Pro, in the lamin A/C gene is common in finnish patients with familial dilated cardiomyopathy. European Heart Journal, 2004, 25, 885-893.	1.0	50
49	Two novel mutations in the β-myosin heavy chain gene associated with dilated cardiomyopathy. European Journal of Heart Failure, 2004, 6, 861-868.	2.9	29
50	Genome-wide search in Finnish families with inflammatory bowel disease provides evidence for novel susceptibility loci. European Journal of Human Genetics, 2003, 11, 112-120.	1.4	33
51	Genetic analysis in Finnish families with inflammatory bowel disease supports linkage to chromosome 3p21. European Journal of Human Genetics, 2001, 9, 328-334.	1.4	43
52	Suggestive evidence for linkage to chromosome 3p21 in finnish inflammatory bowel disease families. Gastroenterology, 2000, 118, A336.	0.6	1
53	High frequency of the H63D mutation of the HFE hemochromatosis gene in liver recipients with fulminant non-a-b-c hepatitis. Gastroenterology, 2000, 118, A996.	0.6	0
54	The effects of the apolipoprotein B signal peptide (ins/del) and Xbal polymorphisms on plasma lipid responses to dietary change. Atherosclerosis, 1996, 122, 1-10.	0.4	34

#		IF	CITATIONS
11			CHAHONS
55	Screening for mutations in the exon 26 of the apolipoprotein B gene in hypercholesterolemic finnish families by the single-strand conformation polymorphism method. Human Mutation, 1994, 4, 217-223.	1.1	8
56	From Ag phenotyping to molecular genetics: apolipoprotein B, serum lipid levels and coronary artery disease in Finland. Clinical Genetics, 1994, 46, 71-76.	1.0	12
57	Genetic Variants of Apolipoprotein B: Relation to Serum Lipid Levels and Coronary Artery Disease Among the Finns. Annals of Medicine, 1992, 24, 357-361.	1.5	15
58	Concept of VNTR alleles: Comparison of apolipoprotein B 3′ hypervariable region genotyping results obtained by three methods. Biochemical and Biophysical Research Communications, 1991, 181, 846-851.	1.0	10