

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7008622/publications.pdf Version: 2024-02-01

GE LIN

6

#	Article	IF	CITATIONS
1	Inferring hydraulic connectivity of induced fractures in the near-wellbore region using distributed acoustic sensing-recorded tube waves excited by perforation shots. Geophysics, 2022, 87, D101-D109.	2.6	5
2	Distributed Acoustic Sensing (DAS) Response of Rising Taylor Bubbles in Slug Flow. Sensors, 2022, 22, 1266.	3.8	7
3	Well Interference and Fracture Geometry Investigation Using Production and Low-Frequency Distributed Acoustic Sensing Data in an Unconventional Reservoir. SPE Reservoir Evaluation and Engineering, 2022, 25, 509-519.	1.8	5
4	Convolutional neural networkâ€based classification of microseismic events originating in a stimulated reservoir from distributed acoustic sensing data. Geophysical Prospecting, 2022, 70, 904-920.	1.9	7
5	Hydraulic Fracture Propagation in Denver-Julesburg Basin Constrained by Cross-Well Distributed Strain Measurements. SPE Journal, 2022, 27, 3446-3454.	3.1	3
6	Hydraulic-Fracture-Width Inversion Using Low-Frequency Distributed-Acoustic-Sensing Strain Data—Part I: Algorithm and Sensitivity Analysis. SPE Journal, 2021, 26, 359-371.	3.1	32
7	Displacement Analysis of Geothermal Field Based on PSInSAR And SOM Clustering Algorithms A Case Study of Brady Field, Nevada—USA. Remote Sensing, 2021, 13, 349.	4.0	6
8	Properties of a deep seismic waveguide measured with an optical fiber. Physical Review Research, 2021, 3, .	3.6	13
9	Modeling and interpretation of scattered waves in interstage distributed acoustic sensing vertical seismic profiling survey. Geophysics, 2021, 86, D93-D102.	2.6	19
10	Hydraulic-Fracture-Width Inversion Using Low-Frequency Distributed-Acoustic-Sensing Strain Data Part II: Extension for Multifracture and Field Application. SPE Journal, 2021, 26, 2703-2715.	3.1	18
11	Novel Near-Wellbore Fracture Diagnosis for Unconventional Wells Using High-Resolution Distributed Strain Sensing during Production. SPE Journal, 2021, 26, 3255-3264.	3.1	34
12	Quantitative Hydraulic-Fracture Geometry Characterization with LF-DAS Strain Data: Numerical Analysis and Field Applications. , 2021, , .		2
13	Seismic inversion of shale reservoir properties using microseismic-induced guided waves recorded by distributed acoustic sensing. Geophysics, 2021, 86, R383-R397.	2.6	17
14	Near-field strain in distributed acoustic sensing-based microseismic observation. Geophysics, 2021, 86, P49-P60.	2.6	19
15	Bayesian inversion for rock composition and petrophysical endpoints in multimineral analysis. , 2021, ,		1
16	Near-field strain of microseismic events in downhole DAS data. , 2021, , .		1
17	Machine learning model evaluation: A case study for core guided petrophysical analysis. , 2021, , .		1

18 Reservoir characterization using DAS microseismic events. , 2021, , .

Ge Jin

#	Article	IF	CITATIONS
19	A machine learning-based new MVA workflow to find correlations in complex data sets applied to fracture diagnostics. , 2021, , .		0
20	Analysis of cross-well fracture hits in DJ Basin, Colorado using low-frequency DAS data. , 2021, , .		5
21	4D DAS fiber-coupling effects in freezing near-surface ground conditions. , 2021, , .		2
22	An eigenfunction representation of deep waveguides with application to unconventional reservoirs. Geophysics, 2021, 86, T509-T521.	2.6	7
23	Convolutional neural network for guided-wave energy identification in microseismic DAS data. , 2021, , .		0
24	Near-wellbore hydraulic fracture connectivity inferred by tube waves in DAS perf shot records. , 2021, , .		1
25	DAS Recorded Body and Tube Wave Generated by Perforation Shots: Analysis and Numerical Modeling for Completion Monitoring and Reservoir Characterization. , 2021, , .		5
26	Fracture-Hit Detection Using LF-DAS Signals Measured during Multifracture Propagation in Unconventional Reservoirs. SPE Reservoir Evaluation and Engineering, 2021, 24, 523-535.	1.8	22
27	Quantitative Hydraulic-Fracture-Geometry Characterization with Low-Frequency Distributed-Acoustic-Sensing Strain Data: Fracture-Height Sensitivity and Field Applications. SPE Production and Operations, 2021, , 1-10.	0.6	4
28	Validating the origin of microseismic events in target reservoir using guided waves recorded by DAS. The Leading Edge, 2020, 39, 776-784.	0.7	16
29	Experimental Investigation of Distributed Acoustic Fiber-Optic Sensing in Production Logging: Thermal Slug Tracking and Multiphase Flow Characterization. , 2020, , .		9
30	Rock Deformation and Strain-Rate Characterization during Hydraulic Fracturing Treatments: Insights for Interpretation of Low-Frequency Distributed Acoustic-Sensing Signals. SPE Journal, 2020, 25, 2251-2264.	3.1	34
31	Inferring near-well conductivity from DAS-recorded tube waves generated by perforation shots. , 2020, , .		4
32	Estimation of seismic velocity and layer thickness of Eagle Ford Formation using microseismic guided waves in downhole distributed acoustic sensing records. , 2020, , .		3
33	Analysis of scattered waves observed in inter-stage DAS VSP data from zipper-fracturing operations. , 2020, , .		2
34	Strain and Strain-Rate Responses Measured by LF-DAS and Corresponding Features for Fracture-Hit Detection during Multiple-Fracture Propagation in Unconventional Reservoirs. , 2020, , .		8
35	Analysis of guided waves excited by microseismic events in DAS data. , 2020, , .		0
36	Machine learning-based fracture-hit detection algorithm using LFDAS signal. The Leading Edge, 2019, 38, 520-524.	0.7	24

Ge Jin

#	Article	IF	CITATIONS
37	The Calibration of Double-Ended Distributed Temperature Sensing for Production Logging Purposes. , 2019, , .		3
38	Fiber Optic Sensing-Based Production Logging Methods for Low-Rate Oil Producers. , 2019, , .		19
39	Sampling a Stimulated Rock Volume: An Eagle Ford Example. SPE Reservoir Evaluation and Engineering, 2018, 21, 927-941.	1.8	86
40	Hydraulic-fracture geometry characterization using low-frequency DAS signal. The Leading Edge, 2017, 36, 975-980.	0.7	183
41	High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere. Nature, 2016, 535, 538-541.		92
42	Imaging Rayleigh wave attenuation with USArray. Geophysical Journal International, 2016, 206, 241-259.	2.4	27
43	Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift. Journal of Geophysical Research: Solid Earth, 2016, 121, 951-971.	3.4	33
44	Crust and upper mantle structure associated with extension in the <scp>W</scp> oodlark <scp>R</scp> ift, <scp>P</scp> apua <scp>N</scp> ew <scp>G</scp> uinea from <scp>R</scp> ayleighâ€wave tomography. Geochemistry, Geophysics, Geosystems, 2015, 16, 3808-3824.	2.5	24
45	Imaging continental breakup using teleseismic body waves: The <scp>W</scp> oodlark <scp>R</scp> ift, <scp>P</scp> apua <scp>N</scp> ew <scp>G</scp> uinea. Geochemistry, Geophysics, Geosystems, 2015, 16, 2529-2548.	2.5	30
46	Crustal structures across the western Weihe Graben, North China: Implications for extrusion tectonics at the northeast margin of Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2015, 120, 5070-5081.	3.4	17
47	Waveform Fitting of Cross Spectra to Determine Phase Velocity Using Aki's Formula. Bulletin of the Seismological Society of America, 2015, 105, 1619-1627.	2.3	19
48	Surface wave phase-velocity tomography based on multichannel cross-correlation. Geophysical Journal International, 2015, 201, 1383-1398.	2.4	94
49	Anisotropy beneath a highly extended continental rift. Geochemistry, Geophysics, Geosystems, 2014, 15, 545-564.	2.5	25
50	Lithospheric and upper mantle structure of the northeastern Tibetan Plateau. Journal of Geophysical Research, 2012, 117, .	3.3	84
51	Doppler effect of the rupture process of the great MW7.9 Wenchuan earthquake. Earthquake Science, 2010, 23, 535-539.	0.9	1
52	Regional earthquakes in northern Tibetan Plateau: Implications for lithospheric strength in Tibet. Geophysical Research Letters, 2010, 37, .	4.0	26
53	Indian mantle corner flow at southern Tibet revealed by shear wave splitting measurements. Geophysical Research Letters, 2008, 35, .	4.0	33
54	Earthquake distribution in southern Tibet and its tectonic implications. Journal of Geophysical Research, 2008, 113, .	3.3	37

		Ge Jin		
#	Article		IF	CITATIONS
55	Introduction to special section: Geoscience of hydraulic fracturing. Interpretation, 0, , 1-3.		1.1	Ο
56	Fracture Imaging Using DAS-Recorded Microseismic Events. Frontiers in Earth Science, 0, 10	, ·	1.8	11