Leonid S Metelitsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7008086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs. Blood, 2022, 140, 16-24.	1.4	14
2	Glypican-3-specific CAR-NKT cells overexpressing BATF3 mediate potent antitumor activity against hepatocellular carcinoma Journal of Clinical Oncology, 2022, 40, e14521-e14521.	1.6	1
3	A Nanoradiomics Approach for Differentiation of Tumors Based on Tumor-Associated Macrophage Burden. Contrast Media and Molecular Imaging, 2021, 2021, 1-9.	0.8	7
4	A High-Avidity T-cell Receptor Redirects Natural Killer T-cell Specificity and Outcompetes the Endogenous Invariant T-cell Receptor. Cancer Immunology Research, 2020, 8, 57-69.	3.4	11
5	Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis. Nature Medicine, 2020, 26, 1686-1690.	30.7	159
6	Glypican-3–Specific CAR T Cells Coexpressing IL15 and IL21 Have Superior Expansion and Antitumor Activity against Hepatocellular Carcinoma. Cancer Immunology Research, 2020, 8, 309-320.	3.4	134
7	NKT Cells Coexpressing a GD2-Specific Chimeric Antigen Receptor and IL15 Show Enhanced <i>In Vivo</i> Persistence and Antitumor Activity against Neuroblastoma. Clinical Cancer Research, 2019, 25, 7126-7138.	7.0	112
8	NK Cells Expressing a Chimeric Activating Receptor Eliminate MDSCs and Rescue Impaired CAR-T Cell Activity against Solid Tumors. Cancer Immunology Research, 2019, 7, 363-375.	3.4	180
9	Eradication of Neuroblastoma by T Cells Redirected with an Optimized GD2-Specific Chimeric Antigen Receptor and Interleukin-15. Clinical Cancer Research, 2019, 25, 2915-2924.	7.0	129
10	A phase I clinical trial using armored GPC3 CAR T cells for children with relapsed/refractory liver tumors Journal of Clinical Oncology, 2019, 37, TPS2647-TPS2647.	1.6	6
11	IL-21 Selectively Protects CD62L+ NKT Cells and Enhances Their Effector Functions for Adoptive Immunotherapy. Journal of Immunology, 2018, 201, 2141-2153.	0.8	40
12	Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells. Cancer Discovery, 2017, 7, 1238-1247.	9.4	204
13	Redirecting T Cells to Glypican-3 with 4-1BB Zeta Chimeric Antigen Receptors Results in Th1 Polarization and Potent Antitumor Activity. Human Gene Therapy, 2017, 28, 437-448.	2.7	72
14	CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. Journal of Clinical Investigation, 2016, 126, 2341-2355.	8.2	127
15	G-CSF Promotes Neuroblastoma Tumorigenicity and Metastasis via STAT3-Dependent Cancer Stem Cell Activation. Cancer Research, 2015, 75, 2566-2579.	0.9	78
16	Effective Cancer Vaccine Platform Based on Attenuated <i>Salmonella</i> and a Type III Secretion System. Cancer Research, 2014, 74, 6260-6270.	0.9	60
17	Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood, 2014, 124, 2824-2833.	1.4	229
18	Evaluation of Salmonella enterica Type III Secretion System Effector Proteins as Carriers for Heterologous Vaccine Antigens. Infection and Immunity, 2012, 80, 1193-1202.	2.2	36

LEONID S METELITSA

#	Article	IF	CITATIONS
19	Clinical Significance of Tumor-Associated Inflammatory Cells in Metastatic Neuroblastoma. Journal of Clinical Oncology, 2012, 30, 3525-3532.	1.6	236
20	IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity. Journal of Clinical Investigation, 2012, 122, 2221-2233.	8.2	126
21	Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans. Clinical Immunology, 2011, 140, 119-129.	3.2	109
22	Enhancement of Cancer Vaccine Therapy by Systemic Delivery of a Tumor-Targeting <i>Salmonella-</i> Based STAT3 shRNA Suppresses the Growth of Established Melanoma Tumors. Cancer Research, 2011, 71, 4183-4191.	0.9	79
23	Novel cancer vaccine based on genes of <i>Salmonella</i> pathogenicity island 2. International Journal of Cancer, 2010, 126, 2622-2634.	5.1	80
24	Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. Journal of Clinical Investigation, 2009, 119, 1524-1536.	8.2	287
25	A new αâ€Câ€galactosylceramide analog: promotion of Th1â€biased responses in human CD1dâ€reactive Vα24â€invariant natural killer T cells. FASEB Journal, 2007, 21, A605.	0.5	1
26	Natural Killer T Cells Infiltrate Neuroblastomas Expressing the Chemokine CCL2. Journal of Experimental Medicine, 2004, 199, 1213-1221.	8.5	215
27	Flow cytometry for natural killer T cells: multi-parameter methods for multifunctional cells. Clinical Immunology, 2004, 110, 267-276.	3.2	32
28	Distinct homeostatic requirements of CD4+ and CD4- subsets of Vα24-invariant natural killer T cells in humans. Blood, 2004, 104, 4150-4156.	1.4	97
29	Antidisialoganglioside/granulocyte macrophage–colony-stimulating factor fusion protein facilitates neutrophil antibody-dependent cellular cytotoxicity and depends on FcγRII (CD32) and Mac-1 (CD11b/CD18) for enhanced effector cell adhesion and azurophil granule exocytosis. Blood, 2002, 99, 4166-4173.	1.4	74
30	NKT and T cells: coordinate regulation of NK-like phenotype and cytokine production. European Journal of Immunology, 2002, 32, 3453-3462.	2.9	54
31	Human NKT Cells Mediate Antitumor Cytotoxicity Directly by Recognizing Target Cell CD1d with Bound Ligand or Indirectly by Producing IL-2 to Activate NK Cells. Journal of Immunology, 2001, 167, 3114-3122.	0.8	315