
Georg Petschenka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7007912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytologist, 2012, 194, 28-45.	7.3	345
2	How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Current Opinion in Insect Science, 2016, 14, 17-24.	4.4	123
3	STEPWISE EVOLUTION OF RESISTANCE TO TOXIC CARDENOLIDES VIA GENETIC SUBSTITUTIONS IN THE NA ⁺ /K ⁺ -ATPASE OF MILKWEED BUTTERFLIES (LEPIDOPTERA: DANAINI). Evolution; International Journal of Organic Evolution, 2013, 67, 2753-2761.	2.3	95
4	Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151865.	2.6	94
5	Convergent adaptive evolution – how insects master the challenge of cardiac glycoside ontaining host plants. Entomologia Experimentalis Et Applicata, 2015, 157, 30-39.	1.4	54
6	Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum,) Tj ETQq0 0 0 rgBT	Overlock	10_Tf 50 542
7	Na ⁺ /K ⁺ -ATPase resistance and cardenolide sequestration: basal adaptations to host plant toxins in the milkweed bugs (Hemiptera: Lygaeidae: Lygaeinae). Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142346.	2.6	47
8	Relative Selectivity of Plant Cardenolides for Na+/K+-ATPases From the Monarch Butterfly and Non-resistant Insects. Frontiers in Plant Science, 2018, 9, 1424.	3.6	39
9	Sequestration of Plant Defense Compounds by Insects: From Mechanisms to Insect–Plant Coevolution.	11.8	36

2	Annual Review of Entomology, 2022, 67, 163-180.	11.0	30
10	Toxicity of Milkweed Leaves and Latex: Chromatographic Quantification Versus Biological Activity of Cardenolides in 16 Asclepias Species. Journal of Chemical Ecology, 2019, 45, 50-60.	1.8	35
11	Cardenolide Intake, Sequestration, and Excretion by the Monarch Butterfly along Gradients of Plant Toxicity and Larval Ontogeny. Journal of Chemical Ecology, 2019, 45, 264-277.	1.8	34
12	Adaptive substitutions underlying cardiac glycoside insensitivity in insects exhibit epistasis in vivo. ELife, 2019, 8, .	6.0	28
13	Functional evidence supports adaptive plant chemical defense along a geographical cline. Proceedings of the United States of America, 2022, 119, .	7.1	17
14	Perspectives for integrated insect pest protection in oilseed rape breeding. Theoretical and Applied Genetics, 2022, 135, 3917-3946.	3.6	11
15	Dietary cardenolides enhance growth and change the direction of the fecundityâ€longevity tradeâ€off in milkweed bugs (Heteroptera: Lygaeinae). Ecology and Evolution, 2021, 11, 18042-18054.	1.9	10
16	Defense of Milkweed Bugs (Heteroptera: Lygaeinae) against Predatory Lacewing Larvae Depends on Structural Differences of Sequestered Cardenolides. Insects, 2020, 11, 485.	2.2	9
17	Insect Collections as an Untapped Source of Bioactive Compounds—Fireflies (Coleoptera: Lampyridae) and Cardiotonic Steroids as a Proof of Concept. Insects, 2021, 12, 689.	2.2	9
18	Analysis of defensive secretion of a milkweed bug Lygaeus equestris by 1D GC-MS and GC×GC-MS: sex differences and host-plant effect. Scientific Reports, 2020, 10, 3092.	3.3	7

#	Article	IF	CITATIONS
19	Amphibian myiasis. Blowfly larvae (Lucilia bufonivora, Diptera: Calliphoridae) coping with the poisonous skin secretion of the common toad (Bufo bufo). Chemoecology, 2014, 24, 159-164.	1.1	0