Karl J Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7006814/publications.pdf

Version: 2024-02-01

		126907	98798
84	5,148	33	67
papers	citations	h-index	g-index
100	100	100	7010
103	103	103	7913
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	In vivo genome editing using a high-efficiency TALEN system. Nature, 2012, 491, 114-118.	27.8	849
2	Mojo Hand, a TALEN design tool for genome editing applications. BMC Bioinformatics, 2013, 14, 1.	2.6	649
3	A Primer for Morpholino Use in Zebrafish. Zebrafish, 2009, 6, 69-77.	1.1	388
4	Gene transfer into genomes of human cells by the sleeping beauty transposon system. Molecular Therapy, 2003, 8, 108-117.	8.2	328
5	In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nature Methods, 2011, 8, 506-512.	19.0	169
6	Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development (Cambridge), 2010, 137, 3119-3128.	2.5	168
7	Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood, 2005, 105, 2691-2698.	1.4	130
8	Nicotine response genetics in the zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18662-18667.	7.1	120
9	Zebrafish: a model for the study of addiction genetics. Human Genetics, 2012, 131, 977-1008.	3.8	111
10	Making designer mutants in model organisms. Development (Cambridge), 2014, 141, 4042-4054.	2.5	105
11	Efficient targeted integration directed by short homology in zebrafish and mammalian cells. ELife, 2020, 9, .	6.0	93
12	The CRISPR Systemâ€"Keeping Zebrafish Gene Targeting Fresh. Zebrafish, 2013, 10, 116-118.	1.1	90
13	Expression of VE-cadherin in zebrafish embryos: A new tool to evaluate vascular development. Developmental Dynamics, 2004, 231, 204-213.	1.8	87
14	Stressing zebrafish for behavioral genetics. Reviews in the Neurosciences, 2011, 22, 49-62.	2.9	87
15	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
16	Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein. Cancer Letters, 2016, 380, 163-173.	7.2	72
17	SCORE Imaging: Specimen in a Corrected Optical Rotational Enclosure. Zebrafish, 2010, 7, 149-154.	1.1	67
18	A TALE of Two Nucleases: Gene Targeting for the Masses?. Zebrafish, 2011, 8, 147-149.	1.1	61

#	Article	IF	CITATIONS
19	Transgenic Zebrafish Using Transposable Elements. Methods in Cell Biology, 2011, 104, 137-149.	1.1	61
20	Transposon vectors for gene-trap insertional mutagenesis in vertebrates. Genesis, 2004, 39, 225-233.	1.6	60
21	Robust activation of microhomology-mediated end joining for precision gene editing applications. PLoS Genetics, 2018, 14, e1007652.	3 . 5	57
22	High Efficiency In Vivo Genome Engineering with a Simplified 15-RVD GoldyTALEN Design. PLoS ONE, 2013, 8, e65259.	2.5	55
23	Enzymatic engineering of the porcine genome with transposons and recombinases. BMC Biotechnology, 2007, 7, 42.	3.3	54
24	Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells. Nucleic Acids Research, 2009, 37, 1239-1247.	14.5	47
25	Trapping Cardiac Recessive Mutants via Expression-Based Insertional Mutagenesis Screening. Circulation Research, 2013, 112, 606-617.	4.5	47
26	FusX: A Rapid One-Step Transcription Activator-Like Effector Assembly System for Genome Science. Human Gene Therapy, 2016, 27, 451-463.	2.7	44
27	Strategies for selection marker-free swine transgenesis using the Sleeping Beauty transposon system. Transgenic Research, 2011, 20, 1125-1137.	2.4	43
28	Combination of Reverse and Chemical Genetic Screens Reveals Angiogenesis Inhibitors and Targets. Chemistry and Biology, 2009, 16, 432-441.	6.0	42
29	Revealing the role of phospholipase $\hat{Cl^23}$ in the regulation of VEGF-induced vascular permeability. Blood, 2012, 120, 2167-2173.	1.4	40
30	A Sequence-Based Variation Map of Zebrafish. Zebrafish, 2013, 10, 15-20.	1.1	40
31	A transgenic zebrafish model for monitoring glucocorticoid receptor activity. Genes, Brain and Behavior, 2014, 13, 478-487.	2.2	40
32	Elucidating cannabinoid biology in zebrafish (Danio rerio). Gene, 2015, 570, 168-179.	2.2	39
33	RINT1 Bi-allelic Variations Cause Infantile-Onset Recurrent Acute Liver Failure and Skeletal Abnormalities. American Journal of Human Genetics, 2019, 105, 108-121.	6.2	39
34	Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon. BMC Biotechnology, 2006, 6, 30.	3.3	37
35	Pigs taking wing with transposons and recombinases. Genome Biology, 2007, 8, S13.	9.6	35
36	Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells. CRISPR Journal, 2019, 2, 417-433.	2.9	35

#	Article	IF	CITATIONS
37	Novel zebrafish behavioral assay to identify modifiers of the rapid, nongenomic stress response. Genes, Brain and Behavior, 2019, 18, e12549.	2.2	35
38	Functional Analysis of Slow Myosin Heavy Chain 1 and Myomesin-3 in Sarcomere Organization in Zebrafish Embryonic Slow Muscles. Journal of Genetics and Genomics, 2012, 39, 69-80.	3.9	30
39	Utility of DNA, RNA, Protein, and Functional Approaches to Solve Cryptic Immunodeficiencies. Journal of Clinical Immunology, 2018, 38, 307-319.	3.8	29
40	Transposon tools hopping in vertebrates. Briefings in Functional Genomics & Proteomics, 2008, 7, 444-453.	3.8	27
41	Genome Engineering with TALE and CRISPR Systems in Neuroscience. Frontiers in Genetics, 2016, 7, 47.	2.3	25
42	The lineage-specific gene <i>ponzr1</i> is essential for zebrafish pronephric and pharyngeal arch development. Development (Cambridge), 2012, 139, 793-804.	2.5	24
43	zfishbook: connecting you to a world of zebrafish revertible mutants. Nucleic Acids Research, 2012, 40, D907-D911.	14.5	24
44	Impact of integrated translational research on clinical exome sequencing. Genetics in Medicine, 2021, 23, 498-507.	2.4	24
45	<i>Tol2</i> gene trap integrations in the zebrafish amyloid precursor protein genes <i>appa</i> and <i>aplp2</i> reveal accumulation of secreted APP at the embryonic veins. Developmental Dynamics, 2012, 241, 415-425.	1.8	23
46	<i>PCNT</i> point mutations and familial intracranial aneurysms. Neurology, 2018, 91, e2170-e2181.	1.1	22
47	Silent Tyrosinemia Type I Without Elevated Tyrosine or Succinylacetone Associated with Liver Cirrhosis and Hepatocellular Carcinoma. Human Mutation, 2016, 37, 1097-1105.	2.5	21
48	Widening of the genetic and clinical spectrum of Lamb–Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency. Genetics in Medicine, 2020, 22, 524-537.	2.4	21
49	<i>Sleeping Beauty</i> àêmediated correction of Fanconi anemia type C. Journal of Gene Medicine, 2011, 13, 462-469.	2.8	18
50	Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS ONE, 2015, 10, e0130688.	2.5	18
51	Bacterial gene control by DNA looping using engineered dimeric transcription activator like effector (TALE) proteins. Nucleic Acids Research, 2018, 46, 2690-2696.	14.5	18
52	Glucocorticoids Target Ependymal Glia and Inhibit Repair of the Injured Spinal Cord. Frontiers in Cell and Developmental Biology, 2019, 7, 56.	3.7	18
53	Fishing for Answers with Transposons. Marine Biotechnology, 2005, 7, 135-141.	2.4	17
54	Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping. Human Gene Therapy, 2016, 27, 425-435.	2.7	17

#	Article	IF	CITATIONS
55	Disruption of <i>pdgfra < i>alters endocardial and myocardial fusion during zebrafish cardiac assembly. Biology Open, 2017, 6, 348-357.</i>	1.2	17
56	Forward Genetic Screening Using Behavioral Tests in Zebrafish: A Proof of Concept Analysis of Mutants. Behavior Genetics, 2017, 47, 125-139.	2.1	16
57	The endocannabinoid gene faah2a modulates stress-associated behavior in zebrafish. PLoS ONE, 2018, 13, e0190897.	2.5	16
58	Dicistronic Gene Expression in Developing Zebrafish. Marine Biotechnology, 1999, 1, 552-561.	2.4	15
59	Inhibition ofskiA andskiB gene expression ventralizes zebrafish embryos. Genesis, 2001, 30, 149-153.	1.6	14
60	Molecular characterization of known and novel <i>ACVR1</i> variants in phenotypes of aberrant ossification. American Journal of Medical Genetics, Part A, 2019, 179, 1764-1777.	1.2	13
61	The Gene Sculpt Suite: a set of tools for genome editing. Nucleic Acids Research, 2019, 47, W175-W182.	14.5	13
62	Endogenous zebrafish proneural Cre drivers generated by CRISPR/Cas9 short homology directed targeted integration. Scientific Reports, 2021, 11, 1732.	3.3	13
63	The FusX TALE Base Editor (FusXTBE) for Rapid Mitochondrial DNA Programming of Human Cells and Zebrafish Disease Models. CRISPR Journal, 2021, , .	2.9	13
64	Haploinsufficiency as a disease mechanism in <i>GNB1</i> â€essociated neurodevelopmental disorder. Molecular Genetics & amp; Genomic Medicine, 2020, 8, e1477.	1.2	12
65	De novo variants of NR4A2 are associated with neurodevelopmental disorder and epilepsy. Genetics in Medicine, 2020, 22, 1413-1417.	2.4	12
66	GeneWeld: Efficient Targeted Integration Directed by Short Homology in Zebrafish. Bio-protocol, 2021, 11, e4100.	0.4	11
67	Building the vertebrate codex using the gene breaking protein trap library. ELife, 2020, 9, .	6.0	11
68	Mayo Clinic Zebrafish Facility Overview. Zebrafish, 2016, 13, S-44-S-46.	1.1	8
69	Cre/lox regulated conditional rescue and inactivation with zebrafish UFlip alleles generated by CRISPR-Cas9 targeted integration. ELife, 0, 11 , .	6.0	8
70	Development and Application of Bovine and Porcine Oligonucleotide Arrays with Protein-Based Annotation. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-11.	3.0	7
71	An In Vivo Method to Quantify Lymphangiogenesis in Zebrafish. PLoS ONE, 2012, 7, e45240.	2.5	7
72	Intestinal Transit Time and Cortisol-Mediated Stress in Zebrafish. Zebrafish, 2017, 14, 404-410.	1.1	5

#	Article	IF	CITATIONS
73	GoldyTALEN Vectors with Improved Efficiency for Golden Gate TALEN Assembly. Human Gene Therapy, 2016, 27, 423-424.	2.7	4
74	Applications of Transposable Elements in Fish for Transgenesis and Functional Genomics. Molecular Aspects of Fish and Marine Biology, 2004, , 532-580.	0.2	3
75	Functional characterization of a <i><scp>GFAP</scp></i> variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic. Clinical Case Reports (discontinued), 2016, 4, 885-895.	0.5	3
76	The Transition of Zebrafish Functional Genetics From Random Mutagenesis to Targeted Integration. , 2018, , 401-416.		3
77	Zebrafish and Drug Development: A Behavioral Assay System for Probing Nicotine Function in Larval Zebrafish. Neuromethods, 2012, , 53-70.	0.3	2
78	Designed architectural proteins that tune DNA looping in bacteria. Nucleic Acids Research, 2021, 49, 10382-10396.	14.5	2
79	Biallelic variants in PROZ as a cause of hypercoagulability and livedo racemosa. Thrombosis Research, 2020, 195, 187-189.	1.7	1
80	Characterization of Gene Repression by Designed Transcription Activator-like Effector Dimer Proteins. Biophysical Journal, 2020, 119, 2045-2054.	0.5	1
81	Designer mutants for behavioral genetics. , 2020, , 263-278.		1
82	Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>In Vitro</i> and <i>In Vivo</i> CRISPR Journal, 2022, 5, 40-52.	2.9	1
83	An optimized FusX assembly-based technique to introduce mitochondrial TC-to-TT variations in human cell lines. STAR Protocols, 2022, 3, 101288.	1.2	1
84	Spotlight on the Future of Scientific Publication. Zebrafish, 2009, 6, 215-217.	1.1	0