Alexandra C Walls

List of Publications by Citations

Source: https://exaly.com/author-pdf/7006683/alexandra-c-walls-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 13,491 42 79 h-index g-index citations papers 88 20,262 31.9 7.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
79	Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. <i>Cell</i> , 2020 , 181, 281-292.e6	56.2	457 ¹
78	Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. <i>Nature</i> , 2020 , 583, 290)-3954	1028
77	Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. <i>Cell</i> , 2020 , 182, 1295-1310.e20	56.2	935
76	Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. <i>Cell</i> , 2020 , 183, 1024-1042.e21	56.2	601
75	Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. <i>Cell</i> , 2019 , 176, 1026-1039.e15	56.2	416
74	N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. <i>Cell</i> , 2021 , 184, 233	3 <i>3</i> - 2.3 4	739s/116
73	Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. <i>Nature</i> , 2021 , 593, 136-141	50.4	376
72	Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. <i>Nature</i> , 2016 , 531, 114-1	l 1570.4	354
71	Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2017 , 114, 11157-1116.	2 ^{11.5}	351
70	Structural basis for human coronavirus attachment to sialic acid receptors. <i>Nature Structural and Molecular Biology</i> , 2019 , 26, 481-489	17.6	341
69	Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. <i>Nature Structural and Molecular Biology</i> , 2016 , 23, 899-905	17.6	252
68	De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. <i>Science</i> , 2020 , 370, 426-431	33.3	219
67	Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. <i>Cell</i> , 2020 , 183, 1367-1382.e17	56.2	217
66	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift <i>Nature</i> , 2021 ,	50.4	204
65	SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. <i>Science</i> , 2021 , 373, 648-654	33.3	197
64	Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. <i>Nature</i> , 2021 , 595, 707-712	50.4	168
63	Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. <i>Nature Structural and Molecular Biology</i> , 2019 , 26, 1151-1157	17.6	161

62	Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020 2021 ,	142
61	Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein	126
60	SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. <i>Nature</i> , 2021 , 597, 97-102 $_{50.4}$	118
59	An -derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. <i>Science Translational Medicine</i> , 2020 , 12,	96
58	Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity <i>Nature</i> , 2022 , 50.4	95
57	Broad sarbecovirus neutralization by a human monoclonal antibody. <i>Nature</i> , 2021 , 597, 103-108 50.4	94
56	Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. <i>Nature</i> , 2021 , 594, 253-258 50.4	92
55	Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. <i>Journal of Virology</i> , 2018 , 92,	92
54	Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. <i>Nature Structural and Molecular Biology</i> , 2020 , 27, 942-949	89
53	RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps. Nature Methods, 2017 , 14, 797-800	84
52	Broad betacoronavirus neutralization by a stem helix-specific human antibody. <i>Science</i> , 2021 , 373, 1109-33.36	; 80
51	Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. <i>Nature Structural and Molecular Biology</i> , 2016 , 23, 59-66	76
50	Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement <i>Science</i> , 2022 , 375, eabn8652	71
49	SARS-CoV-2 B.1.1.7 sensitivity to mRNA vaccine-elicited, convalescent and monoclonal antibodies 2021 ,	69
48	Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. <i>Science</i> , 2021 , eabl8506 _{3.3} .	65
47	Structural basis for broad coronavirus neutralization. <i>Nature Structural and Molecular Biology</i> , 2021 , 28, 478-486	65
46	Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. <i>Nature</i> , 2021 , 598, 342-347 _{50.4}	63
45	SARS-CoV-2 immune evasion by variant B.1.427/B.1.429 2021 ,	62

44	Automatically Fixing Errors in Glycoprotein Structures with Rosetta. Structure, 2019, 27, 134-139.e3	5.2	59
43	Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. <i>Cell Host and Microbe</i> , 2016 , 20, 573-583	23.4	45
42	Serological identification of SARS-CoV-2 infections among children visiting a hospital during the initial Seattle outbreak. <i>Nature Communications</i> , 2020 , 11, 4378	17.4	45
41	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. <i>Nature</i> ,	50.4	44
40	Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids. <i>Journal of Structural Biology</i> , 2017 , 198, 38-42	3.4	43
39	Structural and functional analysis of a potent sarbecovirus neutralizing antibody 2020,		42
38	Designed proteins assemble antibodies into modular nanocages. <i>Science</i> , 2021 , 372,	33.3	35
37	N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 2021 ,		34
36	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. <i>Cell</i> , 2021 , 184, 5432-5447.e16	56.2	34
35	Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding		22
	and ACE2 binding 2020 ,		33
34	Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants 2021 ,		31
34		6.3	
	Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants 2021 , Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron	6.3	31
33	Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants 2021 , Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy. <i>Protein Science</i> , 2017 , 26, 113-121 Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry <i>Science</i> ,		31 28
33	Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants 2021 , Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy. <i>Protein Science</i> , 2017 , 26, 113-121 Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry <i>Science</i> , 2022 , 375, eabm8143		31 28 23
33 32 31	Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants 2021, Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy. <i>Protein Science</i> , 2017, 26, 113-121 Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry <i>Science</i> , 2022, 375, eabm8143 SARS-CoV-2 Omicron spike mediated immune escape and tropism shift SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody	33-3	3128232321
33 32 31 30	Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants 2021, Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy. <i>Protein Science</i> , 2017, 26, 113-121 Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry <i>Science</i> , 2022, 375, eabm8143 SARS-CoV-2 Omicron spike mediated immune escape and tropism shift SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses <i>Cell</i> , 2022,	33·3 56.2	3128232321

26	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. 2021,		16
25	Structural basis for broad coronavirus neutralization 2021,		14
24	Structural basis for broad sarbecovirus neutralization by a human monoclonal antibody 2021,		14
23	A human antibody that broadly neutralizes betacoronaviruses protects against SARS-CoV-2 by blocking the fusion machinery		13
22	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines 2021 ,		12
21	Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2 2020 ,		10
20	ACE2 binding is an ancestral and evolvable trait of sarbecoviruses		10
19	Serological identification of SARS-CoV-2 infections among children visiting a hospital during the initial Seattle outbreak 2020 ,		9
18	Discovery and Characterization of Spike N-Terminal Domain-Binding Aptamers for Rapid SARS-CoV-2 Detection. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21211-21215	16.4	9
17	Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry 2021,		7
16	Closing coronavirus spike glycoproteins by structure-guided design 2020,		7
15	Stabilization of the SARS-CoV-2 Spike Receptor-Binding Domain Using Deep Mutational Scanning and Structure-Based Design. <i>Frontiers in Immunology</i> , 2021 , 12, 710263	8.4	7
14	Adjuvanting a subunit SARS-CoV-2 nanoparticle vaccine to induce protective immunity in non-human primates 2021 ,		7
13	SARS-CoV-2 spike conformation determines plasma neutralizing activity. 2021 ,		6
12	Designed proteins assemble antibodies into modular nanocages 2020,		5
11	Imprinted antibody responses against SARS-CoV-2 Omicron sublineages		5
10	Multivalent designed proteins protect against SARS-CoV-2 variants of concern 2021,		4
9	Structural Studies of Coronavirus Fusion Proteins. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1300-1301	0.5	3

8	Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive panel of human vaccines. 2022 ,		3	
7	ACE2 engagement exposes the fusion peptide to pan-coronavirus neutralizing antibodies		3	
6	Delta breakthrough infections elicit potent, broad and durable neutralizing antibody responses. 2021 ,		3	
5	Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice <i>Science Translational Medicine</i> , 2022 , 14, eabn1252	17.5	3	
4	Structural changes in the SARS-CoV-2 spike E406W mutant escaping a clinical monoclonal antibody cocktail. 2022 ,		2	
3	Structure, receptor recognition and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glyco	prote	in ₂	
2	Detection of antibodies neutralizing historical and emerging SARS-CoV-2 strains using a thermodynamically coupled de novo biosensor system 2021 ,		1	
1	Discovery and Characterization of Spike N-Terminal Domain-Binding Aptamers for Rapid SARS-CoV-2 Detection. <i>Angewandte Chemie</i> , 2021 , 133, 21381-21385	3.6	1	