He-rong Gui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7006185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study on hydrogeochemical connection and water quality assessment of subsidence lake and shallow groundwater in Luling coal-mining area of the Huaibei coalfield, Eastern China. Water Science and Technology: Water Supply, 2022, 22, 1735-1750.	2.1	3
2	Hydrochemical characteristics and hydraulic connection of shallow and mid-layer water in typical mining area: a case study from Sulin mining area in Northern Anhui, China. Water Science and Technology: Water Supply, 2022, 22, 5149-5160.	2.1	3
3	Hydrogeochemistry mechanism contrasts between low and high sulfate in limestone aquifers at the massive coalfield in Anhui province, China. Water Science and Technology: Water Supply, 2022, 22, 6978-6993.	2.1	1
4	Characteristics and source identification of heavy metals in abandoned coal-mining soil: a case study of Zhuxianzhuang coal mine in Huaibei coalfield (Anhui, China). Human and Ecological Risk Assessment (HERA), 2021, 27, 708-723.	3.4	19
5	Hydrogeochemistry of Water in Coal Measures during Grouting Treatment of Taoyuan Mine, China. Ground Water, 2021, 59, 256-265.	1.3	11
6	Geochemical characteristics and geological significance of chert nodules in Qixia formation, Pingding Mountain, lower Yangtze Plate. Journal of Mountain Science, 2021, 18, 88-100.	2.0	4
7	Risks Assessment Associated with Different Sources of Metals in Abandoned Soil of Zhuxianzhuang Coal Mine, Huaibei Coalfield (Anhui, China). Bulletin of Environmental Contamination and Toxicology, 2021, 106, 370-376.	2.7	9
8	Geochemical characteristics, palaeoenvironment, and provenance of marine mudstone in Shanxi Formation of Huaibei Coalfield, southern North China Plate. Geological Journal, 2021, 56, 3064-3080.	1.3	5
9	Spatial distribution, source identification, and health risk assessment of fluoride in the drinking groundwater in the Sulin coal district, northern Anhui Province, China. Water Science and Technology: Water Supply, 2021, 21, 2444-2462.	2.1	9
10	A Well Temperature Correction Based on the Least Squares Method and its Application in a Coal Mining Area, China. Natural Resources Research, 2021, 30, 2287-2296.	4.7	0
11	Contrasting water–rock interaction behaviors of antimony and arsenic in contaminated rivers around an antimony mine, Hunan Province, China. Chemie Der Erde, 2021, 81, 125748.	2.0	13
12	Evaluation of the difference in water quality between urban and suburban rivers based on self-organizing map. Acta Geophysica, 2021, 69, 1855-1864.	2.0	6
13	A combined model to quantitatively assess human health risk from different sources of heavy metals in soils around coal waste pile. Human and Ecological Risk Assessment (HERA), 2021, 27, 2235-2253.	3.4	5
14	Groundwater pollution and human health risk based on Monte Carlo simulation in a typical mining area in Northern Anhui Province, China. International Journal of Coal Science and Technology, 2021, 8, 1118-1129.	6.0	13
15	Characteristics of Soil Heavy Metal Contents and its Source Analysis in Affected Areas of Luning Coal Mine in Huaibei Coalfield. Polish Journal of Environmental Studies, 2021, 30, 1465-1476.	1.2	7
16	Hydrogeochemical Processes and Quality Assessment of Groundwater in Sulin Mining Area, Northern Anhui Province, China. Water Resources, 2021, 48, 991-1000.	0.9	2
17	Characterization of a Lacustrine Shale Reservoir and the Evolution of its Nanopores: A Case Study of the Upper Cretaceous Qingshankou Formation in the Songliao Basin, Northeastern China. Acta Geologica Sinica, 2020, 94, 337-351.	1.4	3
18	Hydrochemical characteristics and water quality evaluation of shallow groundwater in Suxian mining area, Huaibei coalfield, China. International Journal of Coal Science and Technology, 2020, 7, 825-835.	6.0	27

HE-RONG GUI

#	Article	IF	CITATIONS
19	Evaluation of changes in groundwater quality caused by a water inrush event in Taoyuan coal mine, China. Environmental Earth Sciences, 2020, 79, 1.	2.7	18
20	An overview of surface water hazards in China coal mines and disaster-causing mechanism. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	5
21	Hydrogeochemistry characteristic contrasts between low- and high-antimony in shallow drinkable groundwater at the largest antimony mine in hunan province, China. Applied Geochemistry, 2020, 117, 104584.	3.0	23
22	Hydrochemical Characteristics and Water Quality Evaluation of Rivers in Different Regions of Cities: A Case Study of Suzhou City in Northern Anhui Province, China. Water (Switzerland), 2020, 12, 950.	2.7	33
23	Characteristics of Dissolved Organic Matter Content in Urban Rivers under Different Environmental Impact Zones: A case study of China's Tuo River. Polish Journal of Environmental Studies, 2020, 29, 3891-3900.	1.2	7
24	Hydrogeochemical characteristics and water quality assessment of shallow groundwater: a case study from Linhuan coal-mining district in northern Anhui Province, China. Water Science and Technology: Water Supply, 2019, 19, 1572-1578.	2.1	11
25	Hydrogeochemical Characteristics and Water Quality Evaluation of Carboniferous Taiyuan Formation Limestone Water in Sulin Mining Area in Northern Anhui, China. International Journal of Environmental Research and Public Health, 2019, 16, 2512.	2.6	18
26	Heavy metals contamination in shallow groundwater of a coal-mining district and a probabilistic assessment of its human health risk. Human and Ecological Risk Assessment (HERA), 2019, 25, 548-563.	3.4	19
27	Numerical Simulation Applied in Identification of Roof Bed Separation for Mining Thick Coal Seam Under Nappe Structure. IOP Conference Series: Earth and Environmental Science, 2019, 221, 012091.	0.3	1
28	Study on Water-Sand Inrush Mechanism for Mining Under Pore Water in China. IOP Conference Series: Earth and Environmental Science, 2019, 362, 012028.	0.3	0
29	Overview of surface water hazards in China coalmines. Water Practice and Technology, 2019, 14, 851-862.	2.0	1
30	Distribution features and internal relations of heavy metals in soil–maize system of mining area, Anhui Province, Eastern China. Human and Ecological Risk Assessment (HERA), 2019, 25, 863-881.	3.4	11
31	Identification and Application of Roof Bed Separation (Water) in Coal Mines. Mine Water and the Environment, 2018, 37, 376-384.	2.0	23
32	Chemical speciation distribution characteristics and ecological risk assessment of heavy metals in soil from Sunan mining area, Anhui Province, China. Human and Ecological Risk Assessment (HERA), 2018, 24, 1694-1709.	3.4	27
33	Human health risk assessment of trace elements in shallow groundwater of the Linhuan coal-mining district, Northern Anhui Province, China. Human and Ecological Risk Assessment (HERA), 2018, 24, 1342-1351.	3.4	23
34	Overview of goaf water hazards control in China coalmines. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	14
35	Research on preventive technologies for bed-separation water hazard in China coal mines. Applied Water Science, 2018, 8, 1.	5.6	12
36	Patterns of gob-water inrush in Chinese coalmines. Water Practice and Technology, 2017, 12, 444-452.	2.0	4

HE-RONG GUI

#	Article	IF	CITATIONS
37	Water-inrush mechanism research mining above karst confined aquifer and applications in North China coalmines. Arabian Journal of Geosciences, 2017, 10, 1.	1.3	30
38	Anthropogenic impacts on heavy metal concentrations in surface soils from the typical polluted area of Bengbu, Anhui province, Eastern China. Human and Ecological Risk Assessment (HERA), 2017, 23, 1763-1774.	3.4	12
39	Features of separation water hazard in China coalmines. Water Practice and Technology, 2017, 12, 146-155.	2.0	11
40	Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China. Environmental Science and Pollution Research, 2017, 24, 1987-1998.	5.3	74
41	Technical research on controlling major karst water hazards in China coalmines. Water Practice and Technology, 2016, 11, 661-671.	2.0	2
42	Hydrochemical characteristics and quality assessment of deep groundwater from the coal-bearing aquifer of the Linhuan coal-mining district, Northern Anhui Province, China. Environmental Monitoring and Assessment, 2016, 188, 202.	2.7	31
43	Heavy metals in deep groundwater within coal mining area, northern Anhui province, China: concentration, relationship, and source apportionment. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	4
44	Types of water hazards in China coalmines and regional characteristics. Natural Hazards, 2016, 84, 1501-1512.	3.4	64
45	Establishment of water source discrimination model in coal mine by using hydrogeochemistry and statistical analysis: a case study from Renlou Coal Mine in northern Anhui Province, China. Science in China Series A: Mathematics, 2012, 18, 385-389.	0.2	21
46	Rare earth element geochemistry of groundwater from a deep seated sandstone aquifer, northern Anhui province, China. Mining Science and Technology, 2011, 21, 477-482.	0.3	7
47	Monitoring of flow field based on stable isotope geochemical characteristics in deep groundwater. Environmental Monitoring and Assessment, 2011, 179, 487-498.	2.7	17
48	Rare earth element geochemistry of groundwaters from coal bearing aquifer in Renlou coal mine, northern Anhui Province, China. Journal of Rare Earths, 2011, 29, 185-192.	4.8	21