
## Jie Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/700609/publications.pdf Version: 2024-02-01



Ιτε Οιιγλης

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The role of drying methods in determining the in vitro digestibility of starch in whole chestnut<br>flour. LWT - Food Science and Technology, 2022, 153, 112583.                                                                             | 2.5 | 15        |
| 2  | Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chemistry, 2022, 377, 131990.                                                  | 4.2 | 48        |
| 3  | Effects of Endogenous Polyphenols in Acorn ( <i>Quercus wutaishanica</i> Blume) Kernels on the<br>Physicochemical Properties of Starch. Starch/Staerke, 2022, 74, .                                                                          | 1.1 | 7         |
| 4  | Effects of Endogenous Non-Starch Nutrients in Acorn (Quercus wutaishanica Blume) Kernels on the<br>Physicochemical Properties and In Vitro Digestibility of Starch. Foods, 2022, 11, 825.                                                    | 1.9 | 8         |
| 5  | Influence of moisture and amylose on the physicochemical properties of rice starch during heat treatment. International Journal of Biological Macromolecules, 2021, 168, 656-662.                                                            | 3.6 | 28        |
| 6  | Effect of Crosslinking Agents on the Physicochemical and Digestive Properties of Corn Starch<br>Aerogel. Starch/Staerke, 2021, 73, 2000161.                                                                                                  | 1.1 | 11        |
| 7  | Research Progress of Analysis of Mineral Oil Hydrocarbons using On-line High Performance Liquid<br>Chromatography Coupled with Gas Chromatography. Chinese Journal of Analytical Chemistry, 2021,<br>49, 341-349.                            | 0.9 | 4         |
| 8  | Contribution of packaging materials to MOSH and POSH contamination of milk powder products<br>during storage. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and<br>Risk Assessment, 2021, 38, 1034-1043.   | 1.1 | 2         |
| 9  | Survey of mineral oil hydrocarbons in Chinese commercial complementary foods for infants and<br>young children. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and<br>Risk Assessment, 2021, 38, 1441-1455. | 1.1 | 4         |
| 10 | Endogenous bioactive compounds of naked oats (Avena nuda L.) inhibit α-amylase and α-glucosidase<br>activity. LWT - Food Science and Technology, 2021, 149, 111902.                                                                          | 2.5 | 10        |
| 11 | Inhibitory effects of acorn (Quercus variabilis Blume) kernel-derived polyphenols on the activities of<br>α-amylase, α-glucosidase, and dipeptidyl peptidase IV. Food Bioscience, 2021, 43, 101224.                                          | 2.0 | 19        |
| 12 | Influence of Storage Period on the Physicochemical Properties and In Vitro Digestibility of Starch in<br>Packaged Cooked Chestnut Kernel. Starch/Staerke, 2020, 72, 1900080.                                                                 | 1.1 | 4         |
| 13 | Effect of Ultrasonic and Microwave Dual-Treatment on the Physicochemical Properties of Chestnut<br>Starch. Polymers, 2020, 12, 1718.                                                                                                         | 2.0 | 44        |
| 14 | Mild mixed-solvent extraction for determination of total mineral oil hydrocarbon contaminants in milk powder products. Food Chemistry, 2020, 333, 127488.                                                                                    | 4.2 | 5         |
| 15 | Insights into the effects of caffeic acid and amylose on in vitro digestibility of maize starch-caffeic<br>acid complex. International Journal of Biological Macromolecules, 2020, 162, 922-930.                                             | 3.6 | 32        |
| 16 | Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of<br>α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches. Food Chemistry,<br>2020, 324, 126847.           | 4.2 | 48        |
| 17 | Processing of air-dried chestnut and physicochemical properties of its starch with low digestibility.<br>Food Hydrocolloids, 2020, 108, 106051.                                                                                              | 5.6 | 13        |
| 18 | Influence of nutritional components on the texture characteristics and sensory properties of cooked chestnut kernel. Journal of Food Processing and Preservation, 2019, 43, e14112.                                                          | 0.9 | 7         |

JIE OUYANG

| #  | Article                                                                                                                                                                                                                                                                     | IF                        | CITATIONS     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|
| 19 | Effect of microwave irradiation-retrogradation treatment on the digestive and physicochemical properties of starches with different crystallinity. Food Chemistry, 2019, 298, 125015.                                                                                       | 4.2                       | 88            |
| 20 | Non-starch constituents influence the in vitro digestibility of naked oat (Avena nuda L.) starch. Food<br>Chemistry, 2019, 297, 124953.                                                                                                                                     | 4.2                       | 43            |
| 21 | Concentrations of migrated mineral oil/polyolefin oligomeric saturated hydrocarbons (MOSH/POSH)<br>in Chinese commercial milk powder products. Food Additives and Contaminants - Part A Chemistry,<br>Analysis, Control, Exposure and Risk Assessment, 2019, 36, 1261-1272. | 1.1                       | 14            |
| 22 | Influence of amylose on the pasting and gel texture properties of chestnut starch during thermal processing. Food Chemistry, 2019, 294, 378-383.                                                                                                                            | 4.2                       | 47            |
| 23 | Rapid screening of mineral oil aromatic hydrocarbons (MOAH) in grains by fluorescence spectroscopy. Food Chemistry, 2019, 294, 458-467.                                                                                                                                     | 4.2                       | 11            |
| 24 | Purification, characterization and tyrosinase inhibition activity of polysaccharides from chestnut<br>(Castanea mollissima Bl.) kernel. International Journal of Biological Macromolecules, 2019, 131,<br>309-314.                                                          | 3.6                       | 25            |
| 25 | The quality of rice wine influenced by the crystal structure of rice starch. Journal of Food Science and Technology, 2019, 56, 1988-1996.                                                                                                                                   | 1.4                       | 8             |
| 26 | Enhanced removal of hydroquinone by graphene aerogel-Zr-MOF with immobilized laccase. Chemical Engineering Communications, 2018, 205, 698-705.                                                                                                                              | 1.5                       | 35            |
| 27 | Chlorine levels and species in fine and size resolved atmospheric particles by X-ray absorption near-edge structure spectroscopy analysis in Beijing, China. Chemosphere, 2018, 196, 393-401.                                                                               | 4.2                       | 8             |
| 28 | Effect of Drying on the Bioactive Compounds and Antioxidant Activity of <i>Rubus lambertianus</i> .<br>International Journal of Food Engineering, 2018, 14, .                                                                                                               | 0.7                       | 6             |
| 29 | Rapid determination of the texture properties of cooked cereals using near-infrared reflectance spectroscopy. Infrared Physics and Technology, 2018, 94, 165-172.                                                                                                           | 1.3                       | 26            |
| 30 | Relationship between physicochemical characteristics and in vitro digestibility of chestnut (Castanea) Tj ETQq(                                                                                                                                                             | 0 0 0 <sub>5.8</sub> BT / | Overlock 10 T |
| 31 | Physicochemical properties and in vitro digestibility of starch from naturally air-dried chestnut.<br>International Journal of Biological Macromolecules, 2018, 117, 1074-1080.                                                                                             | 3.6                       | 41            |
| 32 | Insights into the crystallinity and in vitro digestibility of chestnut starch during thermal processing.<br>Food Chemistry, 2018, 269, 244-251.                                                                                                                             | 4.2                       | 54            |
| 33 | Synthesis and characterization of mesoporous Cu-MOF for laccase immobilization. Journal of Chemical Technology and Biotechnology, 2017, 92, 1841-1847.                                                                                                                      | 1.6                       | 55            |
| 34 | Synthesis and physicochemical properties of carboxymethyl chestnut starch. Journal of Food<br>Processing and Preservation, 2017, 41, e13229.                                                                                                                                | 0.9                       | 15            |
| 35 | Synthesis, characterization, solubilization, cytotoxicity and antioxidant activity of aminomethylated dihydroquercetin. MedChemComm, 2017, 8, 353-363.                                                                                                                      | 3.5                       | 11            |
| 36 | Chemical Constituents of Essential Oils from Chestnut Flowers. Journal of Essential Oil-bearing<br>Plants: IEOP. 2017. 20. 502-508.                                                                                                                                         | 0.7                       | 3             |

JIE OUYANG

| #  | Article                                                                                                                                                                                                                                      | IF                | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 37 | Rapid evaluation of the quality of chestnuts using near-infrared reflectance spectroscopy. Food Chemistry, 2017, 231, 141-147.                                                                                                               | 4.2               | 28           |
| 38 | Determination of Mineral Oilâ€Saturated Hydrocarbons (MOSH) in Vegetable Oils by Large Scale Offâ€Line<br>SPE Combined with GCâ€FID. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 215-223.                                | 0.8               | 7            |
| 39 | Comparison of the Chemical Compounds and Antioxidant Activities of Essential Oil and Ethanol<br>Extract from Rhododendron tomentosum Harmaja. Journal of Essential Oil-bearing Plants: JEOP, 2017,<br>20, 927-936.                           | 0.7               | 3            |
| 40 | Offline Solid-phase Extraction Large-volume Injection-Gas chromatography for the Analysis of<br>Mineral Oil-saturated Hydrocarbons in Commercial Vegetable Oils. Journal of Oleo Science, 2017, 66,<br>981-990.                              | 0.6               | 10           |
| 41 | Flash Extraction and Physicochemical Characterization of Oil from <i>Elaeagnus mollis</i><br>Diels Seeds. Journal of Oleo Science, 2017, 66, 345-352.                                                                                        | 0.6               | 18           |
| 42 | Nutritional Quality of Chinese Chestnut and Effect of Cooking on its Bioactive Compounds and Antioxidant Activity. Journal of Food Processing and Preservation, 2016, 40, 1383-1390.                                                         | 0.9               | 5            |
| 43 | Effects of Ultrasound on the Physicochemical Properties and Antioxidant Activities of Chestnut Polysaccharide. International Journal of Food Engineering, 2016, 12, 439-449.                                                                 | 0.7               | 25           |
| 44 | Characterization and Antioxidant Activity of Flash-Assisted Extracted Dihydroquercetin from Wood<br>Sawdust of <i>Larix gmelinii</i> Using a Response Surface Methodology. International Journal of<br>Food Engineering, 2016, 12, 587-597.  | 0.7               | 3            |
| 45 | Comparison of the Essential Oil Composition of Wild <i>Rhododendron tomentosum</i> Stems,<br>Leaves, and Flowers in Bloom and Non-bloom Periods from Northeast China. Journal of Essential<br>Oil-bearing Plants: JEOP, 2016, 19, 1216-1223. | 0.7               | 8            |
| 46 | Effect of thermal processing on the physicochemical properties of chestnut starch and textural profile of chestnut kernel. Carbohydrate Polymers, 2016, 151, 614-623.                                                                        | 5.1               | 43           |
| 47 | Molecular weight controllable degradation of Laminaria japonica polysaccharides and its antioxidant properties. Journal of Ocean University of China, 2016, 15, 637-642.                                                                     | 0.6               | 21           |
| 48 | Effect of cooking methods on nutritional quality and volatile compounds of Chinese chestnut<br>(Castanea mollissima Blume). Food Chemistry, 2016, 201, 80-86.                                                                                | 4.2               | 75           |
| 49 | Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF. Process Biochemistry, 2016, 51, 229-239.                                                                                                                            | 1.8               | 129          |
| 50 | Extraction Techniques and Stability of Carotenoprotein from Carrot ( <scp><i>D</i></scp> <i>aucus) Tj ETQq0 0 (</i>                                                                                                                          | Ο rgBT /Ον<br>£.5 | erlock 10 Tf |
| 51 | Purification and structural characterization of an α-glucosidase inhibitory polysaccharide from apricot ( Armeniaca sibirica L. Lam.) pulp. Carbohydrate Polymers, 2015, 121, 309-314.                                                       | 5.1               | 71           |
| 52 | Effects of environmental factors on functional properties of Chinese chestnut (Castanea mollissima)<br>protein isolates. European Food Research and Technology, 2015, 240, 463-469.                                                          | 1.6               | 9            |
| 53 | Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy:<br>A comparative study. Food Chemistry, 2015, 181, 25-30.                                                                              | 4.2               | 88           |

<sup>54</sup>Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by<br/>competitively inhibiting polyphenol oxidase. Food Chemistry, 2015, 171, 19-25.4.266

JIE OUYANG

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | In vitro Antioxidant Activities of Sodium Zinc and Sodium Iron Chlorophyllins from Pine Needles.<br>Food Technology and Biotechnology, 2014, 52, 505-510.                                                                                          | 0.9 | 12        |
| 56 | Synthesis and Evaluation of Microstructure of Phosphorylated Chestnut Starch. Journal of Food<br>Process Engineering, 2014, 37, 75-85.                                                                                                             | 1.5 | 16        |
| 57 | Adsorption properties and preparative separation of phenylethanoid glycosides from Cistanche deserticola by use of macroporous resins. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 937, 84-90. | 1.2 | 23        |
| 58 | Application of Fourier Transform Infrared Spectroscopy Combined with Pattern Recognition Method for Rapid Authentication of Edible Oil. Acta Chimica Sinica, 2012, 70, 995.                                                                        | 0.5 | 2         |
| 59 | On structural damage incurred by bacteria upon exposure to hydrophobic polycationic coatings.<br>Biotechnology Letters, 2011, 33, 411-416.                                                                                                         | 1.1 | 25        |
| 60 | Antimicrobial Properties and Toxicity of Anthraquinones by Microcalorimetric Bioassay. Chinese<br>Journal of Chemistry, 2006, 24, 45-50.                                                                                                           | 2.6 | 40        |
| 61 | Enhanced production of phenylethanoid glycosides by precursor feeding to cell culture of Cistanche deserticola. Process Biochemistry, 2005, 40, 3480-3484.                                                                                         | 1.8 | 58        |
| 62 | Improved production of phenylethanoid glycosides by Cistanche deserticola cells cultured in an internal loop airlift bioreactor with sifter riser. Enzyme and Microbial Technology, 2005, 36, 982-988.                                             | 1.6 | 12        |
| 63 | Formation of phenylethanoid glycosides by Cistanche deserticola callus grown on solid media.<br>Biotechnology Letters, 2003, 25, 223-225.                                                                                                          | 1.1 | 11        |
| 64 | Effects of rare earth elements on the growth of Cistanche deserticola cells and the production of phenylethanoid glycosides. Journal of Biotechnology, 2003, 102, 129-134.                                                                         | 1.9 | 60        |
| 65 | Light intensity and spectral quality influencing the callus growth of Cistanche deserticola and biosynthesis of phenylethanoid glycosides. Plant Science, 2003, 165, 657-661.                                                                      | 1.7 | 39        |
| 66 | Optimization of Ultrasonic-Assisted Preparation of Liposome-Encapsulated Paprika Red and its<br>Improved Light Irradiation Stability. Advanced Materials Research, 0, 781-784, 1791-1800.                                                          | 0.3 | 0         |