
Sergiusz LuliÅ, "ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7006076/publications.pdf Version: 2024-02-01

SERCIUSZ LIULÁ SKL

#	Article	lF	CITATIONS
1	Structural and Energetic Landscape of Fluorinated 1,4-Phenylenediboronic Acids. Crystal Growth and Design, 2012, 12, 3720-3734.	3.0	60
2	Regiospecific Metalation of Oligobromobenzenes. Journal of Organic Chemistry, 2003, 68, 5384-5387.	3.2	59
3	Highly Fluorescent Red-Light Emitting Bis(boranils) Based on Naphthalene Backbone. Journal of Organic Chemistry, 2017, 82, 8234-8241.	3.2	59
4	A tautomeric equilibrium between functionalized 2-formylphenylboronic acids and corresponding 1,3-dihydro-1,3-dihydroxybenzo[c][2,1]oxaboroles. New Journal of Chemistry, 2007, 31, 144-154.	2.8	51
5	Bromine as the Ortho-Directing Group in the Aromatic Metalation/Silylation of Substituted Bromobenzenes. Journal of Organic Chemistry, 2003, 68, 9384-9388.	3.2	46
6	Halogen–lithium exchange between substituted dihalobenzenes and butyllithium: application to the regioselective synthesis of functionalized bromobenzaldehydes. Tetrahedron, 2005, 61, 6590-6595.	1.9	36
7	Formation and Synthetic Applications of Metalated Organoboranes. Current Organic Chemistry, 2010, 14, 2549-2566.	1.6	36
8	Tuning of the colour and chemical stability of model boranils: a strong effect of structural modifications. Organic and Biomolecular Chemistry, 2015, 13, 3268-3279.	2.8	36
9	Nanotubular Hydrogen-Bonded Organic Framework Architecture of 1,2-Phenylenediboronic Acid Hosting Ice Clusters. Crystal Growth and Design, 2013, 13, 4181-4185.	3.0	35
10	Diverse Reactivity of Dialkylaluminum Dimesitylboryloxides [(μ-Mes2BO)AlR2]2. Synthetic and Structural Study. Inorganic Chemistry, 2000, 39, 5763-5767.	4.0	32
11	Anortho-lithiated derivative of protected phenylboronic acid: an approach toortho-functionalized arylboronic acids and 1,3-dihydro-1-hydroxybenzo[c][2,1]oxaboroles. Applied Organometallic Chemistry, 2007, 21, 234-238.	3.5	30
12	On the nature of the B⋯N interaction and the conformational flexibility of arylboronic azaesters. Physical Chemistry Chemical Physics, 2010, 12, 13126.	2.8	28
13	Tandem Synthesis of 9,10â€Dihydroâ€9,10â€diboraanthracenes via Elusive <i>ortho</i> â€Lithiated Phenylboronates. European Journal of Organic Chemistry, 2013, 2013, 8315-8322.	2.4	27
14	Polymorphism of a Model Arylboronic Azaester: Combined Experimental and Computational Studies. Crystal Growth and Design, 2011, 11, 1835-1845.	3.0	26
15	Heteroleptic (2-Fluoro-3-pyridyl)arylborinic 8-Oxyquinolinates for the Potential Application in Organic Light-Emitting Devices. Inorganic Chemistry, 2013, 52, 10846-10859.	4.0	26
16	New Tetrameric Alkylmetal Boryloxides [(μ3-R2BO)MRâ€~]4of Zinc and Cadmium with Heterocubane Structure. Inorganic Chemistry, 1999, 38, 4937-4941.	4.0	25
17	Efficient 8-oxyquinolinato emitters based on a 9,10-dihydro-9,10-diboraanthracene scaffold for applications in optoelectronic devices. Journal of Materials Chemistry C, 2015, 3, 1354-1364.	5.5	24
18	The effect of locking π-conjugation in organoboron moieties in the structures of luminescent tetracoordinate boron complexes. Dalton Transactions, 2019, 48, 8642-8663.	3.3	24

Sergiusz Luliński

#	Article	IF	CITATIONS
19	A study on the metalation of alkoxydibromobenzenes. Tetrahedron Letters, 2005, 46, 4175-4178.	1.4	23
20	Functionalization of Dihalophenylboronic Acids by Deprotonation of Their <i>N</i> â€Butyldiethanolamine Esters. European Journal of Organic Chemistry, 2009, 2009, 4325-4332.	2.4	23
21	Reactions of Hydroxymesitylboranes with Metal Alkyls:  An Approach to New Sterically Hindered (Metaloxy)mesitylboranes. Inorganic Chemistry, 2002, 41, 2525-2528.	4.0	22
22	Oneâ€Pot Generation of Lithium (Lithiophenyl)trialkoxyborates from Substituted Dihalobenzenes (Hal =) Tj ETQq 3171-3178.	0 0 0 rgB ⁻ 2.4	[/Overlock 1 21
23	Benzosiloxaboroles: Silicon Benzoxaborole Congeners with Improved Lewis Acidity, High Diol Affinity, and Potent Bioactivity. Organometallics, 2015, 34, 2924-2932.	2.3	21
24	Hybrid Triazine-Boron Two-Dimensional Covalent Organic Frameworks: Synthesis, Characterization, and DFT Approach to Layer Interaction Energies. ACS Applied Materials & Interfaces, 2017, 9, 31129-31141.	8.0	20
25	Influence of Fluorination and Boronic Group Synergy on the Acidity and Structural Behavior of <i>>o</i> -Phenylenediboronic Acids. Organometallics, 2014, 33, 1608-1616.	2.3	19
26	Synthesis and Characterization of Dialkylmetal Boryloxides [(μ-9-BBN-9-O)MMe2]2, M = Al, Ga, In. Inorganic Chemistry, 1999, 38, 3796-3800.	4.0	18
27	Synthesis and Transformations of Functionalized Benzosiloxaboroles. European Journal of Organic Chemistry, 2017, 2017, 818-826.	2.4	17
28	Remote-Substituent-Directed Metalations of Arenes. Current Organic Chemistry, 2008, 12, 1479-1501.	1.6	16
29	Synthesis of functionalized diarylborinic 8-oxyquinolates via bimetallic boron–lithium intermediates. Journal of Organometallic Chemistry, 2012, 711, 1-9.	1.8	16
30	Selective Generation of Lithiated Benzonitriles: the Importance of Reaction Conditions. Journal of Organic Chemistry, 2008, 73, 7785-7788.	3.2	15
31	On the Directing Effect of Boronate Groups in the Lithiation of Boronated Thiophenes. European Journal of Organic Chemistry, 2012, 2012, 2208-2218.	2.4	15
32	Cationic and Betaine-Type Boronated Acridinium Dyes: Synthesis, Characterization, and Photocatalytic Activity. ACS Omega, 2019, 4, 2482-2492.	3.5	15
33	Antimicrobial and KPC/AmpC inhibitory activity of functionalized benzosiloxaboroles. European Journal of Medicinal Chemistry, 2019, 171, 11-24.	5.5	15
34	Competition between hydrogen and halogen bonding in the structures of 5,10-dihydroxy-5,10-dihydroboranthrenes. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 157-171.	1.1	14
35	Electrophilic ipso-iodination of silylated arylboronic acids. Journal of Organometallic Chemistry, 2010, 695, 2635-2643.	1.8	13
36	Nitrogen–boron coordination versus OHâ< N hydrogen bonding in pyridoxaboroles – aza analogues of benzoxaboroles. Dalton Transactions, 2015, 44, 16534-16546.	3.3	13

Sergiusz Luliński

#	Article	IF	CITATIONS
37	New class of easily-synthesisable and modifiable organic materials for applications in luminescent devices. Dyes and Pigments, 2017, 138, 267-277.	3.7	13
38	Long-Range Effects in the Metalation/Boronation of Functionalized 1,4-Dihalobenzenes. European Journal of Organic Chemistry, 2006, 2006, 5167-5173.	2.4	12
39	Isomeric and Isostructural Oligothienylsilanes–Structurally Similar, Physicochemically Different: The Effect of Interplay between C–H··A·C(ï€), S··A·C(i€), and Chalcogen S···S Interactions. Crystal Grow and Design, 2016, 16, 4292-4308.	/t b. 0	12
40	An intramolecular ortho-assisted activation of the silicon–hydrogen bond in arylsilanes: an experimental and theoretical study. Dalton Transactions, 2018, 47, 3705-3716.	3.3	11
41	The Influence of Boronate Groups on the Selectivity of the Br–Li Exchange in Model Dibromoaryl Boronates. European Journal of Organic Chemistry, 2013, 2013, 3023-3032.	2.4	10
42	Boronate Covalent and Hybrid Organic Frameworks Featuring P ^{III} and P=O Lewis Base Sites. Chemistry - A European Journal, 2020, 26, 12758-12768.	3.3	10
43	Charge transfer properties of two polymorphs of luminescent (2-fluoro-3-pyridyl)(2,2′-biphenyl)borinic 8-oxyquinolinate. Physical Chemistry Chemical Physics, 2014, 16, 22762-22774.	2.8	9
44	Is Carbon Dioxide Able to Activate Halogen/Lithium Exchange?. European Journal of Organic Chemistry, 2014, 2014, 4562-4570.	2.4	9
45	Pyrazole complexes of acyloxydialkylboranes. Journal of Organometallic Chemistry, 1998, 570, 31-37.	1.8	8
46	(2-Methoxy-3-pyridyl)boronic acid. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o702-o704.	0.4	8
47	A diverse structural behaviour of boronated ortho-phthalaldehydes: A crystal structure of 1,3-dihydro-1,3-dihydroxy-4-formylbenzo[c][2,1]oxaborole. Journal of Organometallic Chemistry, 2007, 692, 2924-2929.	1.8	6
48	2,3-Difluoro-4-formylphenylboronic acid. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o145-o146.	0.4	6
49	Synthesis and characterization of di-, tri- and tetraboronic acids based on phenyl- and thienylsilane cores. Journal of Organometallic Chemistry, 2015, 783, 1-9.	1.8	6
50	Synthesis of tetraarylborates <i>via</i> tetralithio intermediates and the effect of polar functional groups and cations on their crystal structures. Dalton Transactions, 2018, 47, 16627-16637.	3.3	6
51	Regioselective Generation of Aryllithiums from Substituted Bromobenzenes XC ₆ H ₄ Br (X = 4â€Br, 4â€I, 4â€CN, 2â€CN). European Journal of Organic Chemistry, 20 2008, 1797-1801.	08,4	5
52	(2-Methoxy-1,3-phenylene)diboronic acid. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o414-o415.	0.2	5
53	Development of structurally extended benzosiloxaboroles – synthesis and in vitro biological evaluation. RSC Advances, 2021, 11, 25104-25121.	3.6	5
54	2-(Methoxycarbonyl)phenylboronic acid. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o301-o303.	0.4	4

Sergiusz Luliński

#	Article	IF	CITATIONS
55	The effect of conformational isomerism on the optical properties of bis(8-oxyquinolato) diboron complexes with a 2,2 $\hat{a}\in^2$ -biphenyl backbone. Dalton Transactions, 2018, 47, 15670-15684.	3.3	4
56	Ionic Porous Organic Polymers Based on Functionalized Tetraarylborates. Polymers, 2019, 11, 1070.	4.5	4
57	Boronate Covalent and Hybrid Organic Frameworks Featuring P III and P=O Lewis Base Sites. Chemistry - A European Journal, 2020, 26, 12688-12688.	3.3	4
58	Differential Sensing of Saccharides Based on an Array of Fluorinated Benzosiloxaborole Receptors. Sensors, 2020, 20, 3540.	3.8	4
59	Heteroelement Analogues of Benzoxaborole and Related Ring Expanded Systems. Molecules, 2021, 26, 5464.	3.8	4
60	Catalyzed reaction of triethylborane with pyrazole. Journal of Organometallic Chemistry, 2000, 597, 190-195.	1.8	3
61	(2-Butoxyphenyl)boronic acid. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o437-o437.	0.2	3
62	3-Carboxy-2-methoxyphenylboronic acid. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1963-o1963.	0.2	3
63	1,2:3,5-Bis[(4-tert-butylphenyl)boranediyl]-î±-D-glucofuranose. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3166-o3166.	0.2	2
64	Synthesis and Applications of Group 14-metalated Arylboranes. Current Organic Synthesis, 2011, 8, 701-720.	1.3	2
65	Ammonia–triphenylborane. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3098-o3098.	0.2	2
66	Experimental and Theoretical Insights into Molecular and Solid-State Properties of Isomeric Bis(salicylaldehydes). Journal of Physical Chemistry A, 2019, 123, 8674-8689.	2.5	2
67	2,4-Dibutoxyphenylboronic acid. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1669-o1669.	0.2	2
68	Design of solvatomorphic structures based on a polyboronated tetraphenyladamantane molecular tecton. CrystEngComm, 2021, 23, 8169-8182.	2.6	2
69	Expedient Synthesis of Oxaboracyclic Compounds Based on Naphthalene and Biphenyl Backbone and Phaseâ€Dependent Luminescence of their Chelate Complexes. Chemistry - A European Journal, 2022, 28, .	3.3	2
70	Dipole-dipole interactions of sulfone groups as a tool for self-assembly of a 2D Covalent Organic Framework derived from a non-linear diboronic acid. Microporous and Mesoporous Materials, 2022, 337, 111914.	4.4	2
71	Mesityl(2,4,6-trimethoxyphenyl)borinic acid. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1711-o1712.	0.2	1
72	(2,4-Dipropoxyphenyl)boronic acid. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3455-o3455.	0.2	1

#	Article	IF	CITATIONS
73	2-Methoxy-3-(trimethylsilyl)phenylboronic acid. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1818-o1818.	0.2	1
74	Design of a D3h-symmetry prismatic tris-(ferrocene-1,1ʹ-diyl) molecular cage bearing boronate ester linkages. Dalton Transactions, 0, , .	3.3	1
75	Halogen—Lithium Exchange Between Substituted Dihalobenzenes and Butyllithium: Application to the Regioselective Synthesis of Functionalized Bromobenzaldehydes ChemInform, 2005, 36, no.	0.0	0
76	Aluminoxanes via boron compounds. Special Publication - Royal Society of Chemistry, 2007, , 40-43.	0.0	0