Henri Brunengraber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/700578/publications.pdf

Version: 2024-02-01

116 papers 5,289 citations

38 h-index 66 g-index

118 all docs

118 does citations

118 times ranked

6200 citing authors

#	Article	IF	CITATIONS
1	Association of Uremic Solutes With Cardiovascular Death in Diabetic Kidney Disease. American Journal of Kidney Diseases, 2022, 80, 502-512.e1.	1.9	15
2	Metabolic Profiling of Skeletal Muscle During Ex-Vivo Normothermic Limb Perfusion. Military Medicine, 2021, 186, 358-363.	0.8	4
3	Overcompensation of CoA Trapping by Di(2-ethylhexyl) Phthalate (DEHP) Metabolites in Livers of Wistar Rats. International Journal of Molecular Sciences, 2021, 22, 13489.	4.1	2
4	Ex-Vivo Normothermic Limb Perfusion With a Hemoglobin-Based Oxygen Carrier Perfusate. Military Medicine, 2020, 185, 110-120.	0.8	13
5	Composite Vascularized Allograft Machine Preservation: State of the Art. Current Transplantation Reports, 2019, 6, 265-276.	2.0	6
6	Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo. Scientific Reports, 2019, 9, 19180.	3.3	37
7	Serine and 1-carbon metabolism are required for HIF-mediated protection against retinopathy of prematurity. JCl Insight, 2019, 4, .	5.0	34
8	Propionate-induced changes in cardiac metabolism, notably CoA trapping, are not altered by <scp>l</scp> -carnitine. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E622-E633.	3. 5	36
9	Inter-relations between 3-hydroxypropionate and propionate metabolism in rat liver: relevance to disorders of propionyl-CoA metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E413-E428.	3 . 5	33
10	Glutathione species and metabolomic prints in subjects with liver disease as biological markers for the detection of hepatocellular carcinoma. Hpb, 2016, 18, 979-990.	0.3	11
11	Assessing Cardiac Metabolism. Circulation Research, 2016, 118, 1659-1701.	4.5	211
12	Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nature Communications, 2016, 7, 11971.	12.8	203
13	New mechanisms by which statins lower plasma cholesterol. Journal of Lipid Research, 2016, 57, 1325-1326.	4.2	1
14	Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4. Cell Reports, 2016, 16, 323-332.	6.4	70
15	Cholesterol in mouse retina originates primarily from in situ de novo biosynthesis. Journal of Lipid Research, 2016, 57, 258-264.	4.2	42
16	A roadmap for interpreting 13 C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 2015, 34, 189-201.	6.6	513
17	Multiple Mass Isotopomer Tracing of Acetyl-CoA Metabolism in Langendorff-perfused Rat Hearts. Journal of Biological Chemistry, 2015, 290, 8121-8132.	3.4	22
18	Compartmentation of Metabolism of the C12-, C9-, and C5-n-dicarboxylates in Rat Liver, Investigated by Mass Isotopomer Analysis. Journal of Biological Chemistry, 2015, 290, 18671-18677.	3.4	19

#	Article	IF	CITATIONS
19	Anaplerotic treatment of long-chain fat oxidation disorders with triheptanoin: Review of 15years Experience. Molecular Genetics and Metabolism, 2015, 116, 260-268.	1.1	71
20	Hepatic Metabolism of 3â€Hydroxypropionate a Byproduct in Propionic Acidemia. FASEB Journal, 2015, 29, .	0.5	0
21	Metabolomics and Mass Isotopomer Analysis as a Strategy for Pathway Discovery: Pyrrolyl and Cyclopentenyl Derivatives of the Pro-Drug of Abuse, Levulinate. Chemical Research in Toxicology, 2013, 26, 213-220.	3.3	9
22	Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R829-R836.	1.8	101
23	Metabolic fate of lactate after anoxia at 20°C in the Western painted turtle. FASEB Journal, 2013, 27, 714.14.	0.5	0
24	Metabolism of \hat{I}^3 -hydroxybutyrate in perfused rat livers. Biochemical Journal, 2012, 444, 333-341.	3.7	15
25	What is the proper precursor-to-product labeling relationship for calculating the fractional synthetic rate of muscle triglyceride?. Journal of Lipid Research, 2012, 53, 1-3.	4.2	5
26	Cyclical C7â€CoA esters derived from calcium levulinate, a proâ€drug of abuse. FASEB Journal, 2012, 26, 551.1.	0.5	0
27	Metabolomics, Pathway Regulation, and Pathway Discovery. Journal of Biological Chemistry, 2011, 286, 23631-23635.	3.4	53
28	Analysis of the Citric Acid Cycle Intermediates Using Gas Chromatography-Mass Spectrometry. Methods in Molecular Biology, 2011, 708, 147-157.	0.9	17
29	Delineation of substrate selection and anaplerosis in tricarboxylic acid cycle of the heart by ¹³ C NMR spectroscopy and mass spectrometry. NMR in Biomedicine, 2011, 24, 176-187.	2.8	11
30	Metabolism of Levulinate in Perfused Rat Livers and Live Rats. Journal of Biological Chemistry, 2011, 286, 5895-5904.	3.4	19
31	Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E362-E371.	3.5	47
32	Using Isotopic Tools to Dissect and Quantitate Parallel Metabolic Pathways. Journal of the American Chemical Society, 2010, 132, 6309-6311.	13.7	27
33	Interrelations between C4 Ketogenesis, C5 Ketogenesis, and Anaplerosis in the Perfused Rat Liver. Journal of Biological Chemistry, 2009, 284, 27799-27807.	3.4	42
34	Catabolism of 4-Hydroxyacids and 4-Hydroxynonenal via 4-Hydroxy-4-phosphoacyl-CoAs. Journal of Biological Chemistry, 2009, 284, 33521-33534.	3.4	56
35	Dynamics of glutathione and ophthalmate traced with < sup > 2 < / sup > H-enriched body water in rats and humans. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E260-E269.	3.5	29
36	Dipropionylcysteine Ethyl Ester Compensates for Loss of Citric Acid Cycle Intermediates During Post Ischemia Reperfusion in the Pig Heart. Cardiovascular Drugs and Therapy, 2009, 23, 459-469.	2.6	8

#	Article	IF	Citations
37	Is There Glucose Production Outside of the Liver and Kidney?. Annual Review of Nutrition, 2009, 29, 43-57.	10.1	37
38	Interrelations between C 4 â€ketogenesis and C 5 â€ketogenesis in the perfused rat liver. FASEB Journal, 2009, 23, .	0.5	0
39	Metabolomic and Mass Isotopomer Analysis of Liver Gluconeogenesis and Citric Acid Cycle. Journal of Biological Chemistry, 2008, 283, 21988-21996.	3.4	24
40	Metabolomic and Mass Isotopomer Analysis of Liver Gluconeogenesis and Citric Acid Cycle. Journal of Biological Chemistry, 2008, 283, 21978-21987.	3.4	35
41	Mass isotopomer study of anaplerosis from propionate in the perfused rat heart. Archives of Biochemistry and Biophysics, 2007, 463, 110-117.	3.0	22
42	Assay of the activity of malonyl–coenzyme A decarboxylase by gas chromatography–mass spectrometry. Analytical Biochemistry, 2007, 363, 169-174.	2.4	5
43	Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochemistry and Cell Biology, 2007, 127, 273-290.	1.7	77
44	Measurements of the kinetics of the pentose phosphate pathway (PPP) in perfused hearts and livers, using [Uâ€13C6]gluconolactone. FASEB Journal, 2007, 21, A836.	0.5	0
45	Partial betaâ€oxidation of gammaâ€hydroxybutyrate (GHB) in perfused rat livers. FASEB Journal, 2007, 21, A664.	0.5	0
46	Anaplerosis from heptanoate â€a propionyl oA precursor―in mouse brain. FASEB Journal, 2007, 21, A340.	0.5	1
47	Interference of ethanol with the metabolism of gammaâ€hydroxybutyrate (GHB) in the perfused rat liver. FASEB Journal, 2007, 21, A664.	0.5	0
48	Competition between acetate and oleate for the formation of malonyl-CoA and mitochondrial acetyl-CoA in the perfused rat heart. Journal of Molecular and Cellular Cardiology, 2006, 41, 868-875.	1.9	9
49	Differential effects of heptanoate and hexanoate on myocardial citric acid cycle intermediates following ischemia-reperfusion. Journal of Applied Physiology, 2006, 100, 76-82.	2.5	18
50	Metabolomic assays of the concentration and mass isotopomer distribution of gluconeogenic and citric acid cycle intermediates. Metabolomics, 2006, 2, 85-94.	3.0	28
51	Anaplerotic molecules: Current and future. Journal of Inherited Metabolic Disease, 2006, 29, 327-331.	3.6	170
52	An improved procedure for the synthesis of labelled fatty acids utilizing diethyl malonate. Journal of Labelled Compounds and Radiopharmaceuticals, 2006, 49, 171-176.	1.0	2
53	Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E860-E866.	3.5	55
54	Acetylâ€CoA generated in peroxisomes of CHO and HepG2 cells is preferentially incorporated into sterols versus fatty acids: studies with [Uâ€13C12]dodecanedioate. FASEB Journal, 2006, 20, A1467.	0.5	1

#	Article	IF	Citations
55	Assay of the concentration and 13Câ€isotopic enrichment of gluconeogenic and citric acid cycle intermediates by gas chromatographyâ€mass spectrometry. FASEB Journal, 2006, 20, A1466.	0.5	O
56	Probing peroxisomal \hat{l}^2 -oxidation and the labelling of acetyl-CoA proxies with [1-13C]octanoate and [3-13C]octanoate in the perfused rat liver. Biochemical Journal, 2005, 389, 397-401.	3.7	42
57	Peroxisomal and Mitochondrial Oxidation of Fatty Acids in the Heart, Assessed from the 13C Labeling of Malonyl-CoA and the Acetyl Moiety of Citrate. Journal of Biological Chemistry, 2005, 280, 9265-9271.	3.4	48
58	Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Molecular Genetics and Metabolism, 2005, 84, 305-312.	1.1	127
59	Quantifying rates of protein synthesis in humans by use of2H2O: application to patients with end-stage renal disease. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E665-E672.	3.5	81
60	Peroxisomal Fatty Acid Oxidation Is a Substantial Source of the Acetyl Moiety of Malonyl-CoA in Rat Heart. Journal of Biological Chemistry, 2004, 279, 19574-19579.	3.4	72
61	In Vitro Modeling of Fatty Acid Synthesis under Conditions Simulating the Zonation of Lipogenic [13C]Acetyl-CoA Enrichment in the Liver. Journal of Biological Chemistry, 2004, 279, 43217-43226.	3.4	18
62	Regulation of Malonyl-CoA Concentration and Turnover in the Normal Heart. Journal of Biological Chemistry, 2004, 279, 34298-34301.	3.4	35
63	Zonation of Labeling of Lipogenic Acetyl-CoA across the Liver. Journal of Biological Chemistry, 2004, 279, 43207-43216.	3.4	31
64	NEW SECONDARY METABOLITES OF PHENYLBUTYRATE IN HUMANS AND RATS. Drug Metabolism and Disposition, 2004, 32, 10-19.	3.3	45
65	Investigations by mass isotopomer analysis of the formation of D-2-hydroxyglutarate by cultured lymphoblasts from two patients with D-2-hydroxyglutaric aciduria. FEBS Letters, 2004, 557, 115-120.	2.8	34
66	Post-ischemic treatment with dipyruvyl-acetyl-glycerol decreases myocardial infarct size in the pig. Cardiovascular Drugs and Therapy, 2003, 17, 209-216.	2.6	16
67	Assessing the Reversibility of the Anaplerotic Reactions of the Propionyl-CoA Pathway in Heart and Liver. Journal of Biological Chemistry, 2003, 278, 34959-34965.	3.4	49
68	Quantitative assessment of anaplerosis from propionate in pig heart in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E351-E356.	3.5	30
69	Probing the link between citrate and malonyl-CoA in perfused rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1379-H1386.	3.2	26
70	Identification of phenylbutyrylglutamine, a new metabolite of phenylbutyrate metabolism in humans. Journal of Mass Spectrometry, 2002, 37, 581-590.	1.6	25
71	Assay of the Concentration and 13C Isotopic Enrichment of Propionyl-CoA, Methylmalonyl-CoA, and Succinyl-CoA by Gas Chromatography–Mass Spectrometry. Analytical Biochemistry, 2002, 305, 90-96.	2.4	26
72	Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. Journal of Clinical Investigation, 2002, 110, 259-269.	8.2	215

#	Article	IF	Citations
73	Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. Journal of Clinical Investigation, 2002, 110, 259-269.	8.2	117
74	Acute hibernation decreases myocardial pyruvate carboxylation and citrate release. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1613-H1620.	3.2	56
75	Assay of the Concentration and 13C-Isotopic Enrichment of Malonyl–Coenzyme A by Gas Chromatography–Mass Spectrometry. Analytical Biochemistry, 2001, 298, 69-75.	2.4	47
76	Dog model of therapeutic ketosis induced by oral administration of R,S-1,3-butanediol diacetoacetate. Journal of Nutritional Biochemistry, 2000, 11, 281-287.	4.2	30
77	Glutamate, a Window on Liver Intermediary Metabolism. Journal of Nutrition, 2000, 130, 991S-994S.	2.9	32
78	Partitioning of pyruvate between oxidation and anaplerosis in swine hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2390-H2398.	3.2	80
79	Integrative physiology of splanchnic glutamine and ammonium metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E469-E476.	3.5	14
80	Zonation of acetate labeling across the liver: implications for studies of lipogenesis by MIDA. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E1022-E1027.	3.5	27
81	15N enrichment of ammonium, glutamine-amide and urea, measured via mass isotopomer analysis of hexamethylenetetramine., 1999, 34, 1130-1136.		7
82	Assay of Low Deuterium Enrichment of Water by Isotopic Exchange with [U-13C3]Acetone and Gas Chromatography–Mass Spectrometry. Analytical Biochemistry, 1998, 258, 315-321.	2.4	99
83	Limitations of the Mass Isotopomer Distribution Analysis of Glucose to Study Gluconeogenesis. Journal of Biological Chemistry, 1998, 273, 16853-16859.	3.4	24
84	Limitations in estimating gluconeogenesis and Cori cycling from mass isotopomer distributions using [U-13C6]glucose. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E954-E961.	3.5	19
85	Methods for measuring gluconeogenesis in vivo. Current Opinion in Clinical Nutrition and Metabolic Care, 1998, 1, 461-465.	2.5	27
86	APPLICATIONS OF MASS ISOTOPOMER ANALYSISTO NUTRITION RESEARCH. Annual Review of Nutrition, 1997, 17, 559-596.	10.1	100
87	Potential of ketone body esters for parenteral and oral nutrition. Nutrition, 1997, 13, 233-235.	2.4	32
88	Tracing Gluconeogenesis with Deuterated Water: Measurement of Low Deuterium Enrichments on Carbons 6 and 2 of Glucose. Analytical Biochemistry, 1997, 248, 158-167.	2.4	16
89	Stable Isotope Model for Assessing Production of Short Chain Fatty Acids from Colon-Derived Sugar: Application in Pigs. Journal of Nutrition, 1996, 126, 3069-3076.	2.9	20
90	Correction of 13C Mass Isotopomer Distributions for Natural Stable Isotope Abundance., 1996, 31, 255-262.		347

#	Article	IF	CITATIONS
91	Assay of the Deuterium Enrichment of Water via Acetylene. , 1996, 31, 639-642.		52
92	Assay of the 13C and 2H Mass Isotopomer Distribution of Phosphoenolpyruvate by Gas Chromatography/Mass Spectrometry., 1996, 31, 643-648.		6
93	Assay of the concentration and stable isotope enrichment of short-chain fatty acids by gas chromatography/mass spectrometry. Journal of Mass Spectrometry, 1995, 30, 747-754.	1.6	40
94	R,S-1,3-butanediol acetoacetate esters, potential alternates to lipid emulsions for total parenteral nutrition. Journal of Nutritional Biochemistry, 1995, 6, 111-118.	4.2	23
95	Tracing Hepatic Gluconeogenesis Relative to Citric Acid Cycle Activity in Vitro and in Vivo. Journal of Biological Chemistry, 1995, 270, 1509-1514.	3.4	41
96	Limitations of the Mass Isotopomer Distribution Analysis of Glucose to Study Gluconeogenesis. Journal of Biological Chemistry, 1995, 270, 19806-19815.	3.4	72
97	Isotopomer Analysis of Citric Acid Cycle and Gluconeogenesis in Rat Liver. Journal of Biological Chemistry, 1995, 270, 10027-10036.	3.4	100
98	Determination of (13C)urea enrichment by gas chromatography/mass spectrometry and gas chromatography/isotope ratio mass spectrometry. Biological Mass Spectrometry, 1994, 23, 510-513.	0.5	19
99	Biosynthesis and characterization of 3-hydroxyalkan-2-ones and 2,3-alkanediols: Potential products of aldehyde metabolism. Biological Mass Spectrometry, 1992, 21, 242-248.	0.5	8
100	Quantitation of 1,3-butanediol and its acidic metabolites by gas chromatography-mass spectrometry. Analytical Biochemistry, 1990, 186, 101-107.	2.4	3
101	One-stage hepatectomy in the dog. Journal of Surgical Research, 1990, 48, 33-37.	1.6	6
102	Interference of 3-hydroxyisobutyrate with measurements of ketone body concentration and isotopic enrichment by gas chromatography-mass spectrometry. Analytical Biochemistry, 1988, 173, 96-105.	2.4	64
103	Lipogenesis from ketone bodies in the perfused rat liver: effects of acetate and ethanol. Biochemistry and Cell Biology, 1987, 65, 989-996.	2.0	8
104	Metabolism of S-3-hydroxybutyrate in the perfused rat liver. Archives of Biochemistry and Biophysics, 1987, 259, 149-156.	3.0	65
105	[12] Shunt pathway of mevalonate metabolism. Methods in Enzymology, 1985, 110, 100-114.	1.0	25
106	Ultrastructure and Intercellular Vacuolization of Isolated Perfused and Control Rat Testes. Journal of Andrology, 1983, 4, 361-370.	2.0	7
107	Assessment of the flux of mitochondrial acetyl-CoA in liver and kidney by using the differential production of 14CO2 from tracers of (1-14C)- and (2-14C)-labelled 4-methyl-2-oxovalerate. Biochemical Journal, 1983, 210, 265-268.	3.7	10
108	Underestimation of metabolic rates owing to reincorporation of 14CO2 in the perfused rat liver. Biochemical Journal, 1982, 208, 231-234.	3.7	40

#	Article	IF	CITATIONS
109	Effects of hydroxyurea and benzo(a)pyrene on DNA synthesis in the isolated perfused rat lung. Bulletin of Environmental Contamination and Toxicology, 1982, 28, 135-140.	2.7	3
110	Microcarrier culture: Applications in biological production and cell biology. Biotechnology and Bioengineering, 1981, 23, 2673-2689.	3.3	17
111	[36] Hydroxycitrate. Methods in Enzymology, 1981, 72, 486-497.	1.0	25
112	Fatty Acid, 3-beta-Hydroxysterol, and Ketone Synthesis in the Perfused Rat Liver. Effects of (-)-Hydroxycitrate and Oleate. FEBS Journal, 1978, 82, 373-384.	0.2	52
113	Effect of (â^')-hydroxycitrate on ketone production by the perfused liver. FEBS Letters, 1976, 65, 251-253.	2.8	6
114	Effect of (â^')-hydroxycitrate on ethanol metabolism. FEBS Letters, 1973, 36, 130-132.	2.8	44
115	Fatty acid synthesis by the liver perfused with deuterated and tritiated water. Biochemistry, 1973, 12, 2619-2624.	2.5	71
116	Fatty Acid and 3-β-Hydroxysterol Synthesis in the Perfused Rat Liver. Journal of Biological Chemistry, 1973, 248, 2656-2669.	3.4	200