
Adrien Kissenpfennig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7004965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deletion of Socs3 in LysM+ cells and Cx3cr1 resulted in age-dependent development of retinal microgliopathy. Molecular Neurodegeneration, 2021, 16, 9.	4.4	6
2	FKBPL-based peptide, ALM201, targets angiogenesis and cancer stem cells in ovarian cancer. British Journal of Cancer, 2020, 122, 361-371.	2.9	38
3	Hyaloid Vasculature as a Major Source of STAT3 ⁺ (Signal Transducer and Activator of) Tj ETQq1 Retinopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e367-e379.	1 0.784314 1.1	rgBT /Overloo 7
4	STAT3 activation in circulating myeloid-derived cells contributes to retinal microvascular dysfunction in diabetes. Journal of Neuroinflammation, 2019, 16, 138.	3.1	22
5	Cytokine Signaling Protein 3 Deficiency in Myeloid Cells Promotes Retinal Degeneration and Angiogenesis through Arginase-1 Up-Regulation in Experimental Autoimmune Uveoretinitis. American Journal of Pathology, 2018, 188, 1007-1020.	1.9	23
6	Nanotechnologies for tissue engineering and regeneration. , 2018, , 93-206.		12
7	Development of transplant immunosuppressive agents – considerations in the use of animal models. Expert Opinion on Drug Discovery, 2018, 13, 1041-1053.	2.5	10
8	Design and characterisation of a dissolving microneedle patch for intradermal vaccination with heat-inactivated bacteria: A proof of concept study. International Journal of Pharmaceutics, 2018, 549, 87-95.	2.6	32
9	Microneedle arrays for vaccine delivery: the possibilities, challenges and use of nanoparticles as a combinatorial approach for enhanced vaccine immunogenicity. Expert Opinion on Drug Delivery, 2018, 15, 851-867.	2.4	37
10	In vivo studies investigating biodistribution of nanoparticle-encapsulated rhodamine B delivered via dissolving microneedles. Journal of Controlled Release, 2017, 265, 57-65.	4.8	69
11	Repeat application of microneedles does not alter skin appearance or barrier function and causes no measurable disturbance of serum biomarkers of infection, inflammation or immunity in mice in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 400-407.	2.0	82
12	Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1275-1286.	2.5	517
13	Regulatory T cells promote myelin regeneration in the central nervous system. Nature Neuroscience, 2017, 20, 674-680.	7.1	343
14	DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 921-932.	1.7	85
15	Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells, 2016, 34, 2210-2223.	1.4	401
16	Reduced epithelial suppressor of cytokine signalling 1 in severe eosinophilic asthma. European Respiratory Journal, 2016, 48, 715-725.	3.1	24
17	Innate Lymphoid Cells Are the Predominant Source of IL-17A during the Early Pathogenesis of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 407-416.	2.5	91
18	FKBPL Is a Critical Antiangiogenic Regulator of Developmental and Pathological Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 845-854.	1.1	38

Adrien Kissenpfennig

#	Article	IF	CITATIONS
19	Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: Formulation, characterisation and functionalisation with dornase alfa (DNase). Journal of Controlled Release, 2015, 198, 55-61.	4.8	122
20	Elucidation of the RamA Regulon in Klebsiella pneumoniae Reveals a Role in LPS Regulation. PLoS Pathogens, 2015, 11, e1004627.	2.1	95
21	The utility of animal models in developing immunosuppressive agents. European Journal of Pharmacology, 2015, 759, 295-302.	1.7	11
22	Targeting Siglecs with a sialic acid–decorated nanoparticle abrogates inflammation. Science Translational Medicine, 2015, 7, 303ra140.	5.8	142
23	Dissolving Microneedle Delivery of Nanoparticle-Encapsulated Antigen Elicits Efficient Cross-Priming and Th1 Immune Responses by Murine Langerhans Cells. Journal of Investigative Dermatology, 2015, 135, 425-434.	0.3	78
24	Laser-engineered dissolving microneedle arrays for protein delivery: potential for enhanced intradermal vaccination. Journal of Pharmacy and Pharmacology, 2015, 67, 409-425.	1.2	33
25	Langerhans cells promote early germinal center formation in response to <i>Leishmania</i> â€derived cutaneous antigens. European Journal of Immunology, 2014, 44, 2955-2967.	1.6	23
26	Aging impairs peritoneal but not bone marrowâ€derived macrophage phagocytosis. Aging Cell, 2014, 13, 699-708.	3.0	120
27	Btk Regulates Macrophage Polarization in Response to Lipopolysaccharide. PLoS ONE, 2014, 9, e85834.	1.1	109
28	Targeting Treatment-Resistant Breast Cancer Stem Cells with FKBPL and Its Peptide Derivative, AD-01, via the CD44 Pathway. Clinical Cancer Research, 2013, 19, 3881-3893.	3.2	63
29	Skin Dendritic Cell Targeting <i>via</i> Microneedle Arrays Laden with Antigen-Encapsulated Poly- <scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> -Glycolide Nanoparticles Induces Efficient Antitumor and Antiviral Immune Responses. ACS Nano, 2013, 7, 2042-2055.	7.3	192
30	Cathepsin S from both tumor and tumorâ€associated cells promote cancer growth and neovascularization. International Journal of Cancer, 2013, 133, 2102-2112.	2.3	80
31	Regulation of Foxp3+ Inducible Regulatory T Cell Stability by SOCS2. Journal of Immunology, 2013, 190, 3235-3245.	0.4	41
32	Skin Langerin+ Dendritic Cells Transport Intradermally Injected Anti–DEC-205 Antibodies but Are Not Essential for Subsequent Cytotoxic CD8+ T Cell Responses. Journal of Immunology, 2012, 188, 2146-2155.	0.4	27
33	Microneedle-mediated vaccine delivery: Harnessing cutaneous immunobiology to improve efficacy. Expert Opinion on Drug Delivery, 2012, 9, 541-550.	2.4	74
34	Determining the role of mononuclear phagocytes in prion neuroinvasion from the skin. Journal of Leukocyte Biology, 2012, 91, 817-828.	1.5	13
35	Defects in acute responses to TLR4 in Btk-deficient mice result in impaired dendritic cell-induced IFN-Î ³ production by natural killer cells. Clinical Immunology, 2012, 142, 373-382.	1.4	28
36	Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8+ T cells and activating Foxp3+ regulatory T cells. Journal of Clinical Investigation, 2012, 122, 1700-1711.	3.9	146

#	Article	IF	CITATIONS
37	Cell-to-Cell Interactions and Signals Involved in the Reconstitution of Peripheral CD8+ TCM and TEM Cell Pools. PLoS ONE, 2011, 6, e17423.	1.1	8
38	The Role of Direct Presentation by Donor Dendritic Cells in Rejection of Minor Histocompatibility Antigen-Mismatched Skin and Hematopoietic Cell Grafts. Transplantation, 2011, 91, 154-160.	0.5	13
39	Integrated Tâ€cell receptor and costimulatory signals determine TGFâ€Î²â€dependent differentiation and maintenance of Foxp3 ⁺ regulatory T cells. European Journal of Immunology, 2011, 41, 1242-1248.	1.6	81
40	Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development (Cambridge), 2011, 138, 3647-3656.	1.2	734
41	Langerin+ Dermal Dendritic Cells Are Critical for CD8+ T Cell Activation and IgH Î ³ -1 Class Switching in Response to Gene Gun Vaccines. Journal of Immunology, 2011, 186, 1377-1383.	0.4	41
42	SOCS2 regulates T helper type 2 differentiation and the generation of type 2 allergic responses. Journal of Experimental Medicine, 2011, 208, 1523-1531.	4.2	75
43	Foxp3+ T Cells Induce Perforin-Dependent Dendritic Cell Death in Tumor-Draining Lymph Nodes. Immunity, 2010, 32, 266-278.	6.6	152
44	CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. Journal of Experimental Medicine, 2010, 207, 189-206.	4.2	350
45	Langerhans Cells Prime IL-17–Producing T Cells and Dampen Genital Cytotoxic Responses following Mucosal Immunization. Journal of Immunology, 2010, 184, 4842-4851.	0.4	33
46	Vasodilator-Stimulated Phosphoprotein Regulates Inside-Out Signaling of β2 Integrins in Neutrophils. Journal of Immunology, 2010, 184, 6575-6584.	0.4	19
47	Priming of CD8+ and CD4+ T Cells in Experimental Leishmaniasis Is Initiated by Different Dendritic Cell Subtypes. Journal of Immunology, 2009, 182, 774-783.	0.4	93
48	Structural Bases for the Affinity-Driven Selection of a Public TCR against a Dominant Human Cytomegalovirus Epitope. Journal of Immunology, 2009, 183, 430-437.	0.4	93
49	Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. Journal of Experimental Medicine, 2009, 206, 3089-3100.	4.2	328
50	Langerhans cells are critical in the development of atopic dermatitisâ€like inflammation and symptoms in mice. Journal of Cellular and Molecular Medicine, 2009, 13, 2658-2672.	1.6	65
51	Peripheral Thy1 ⁺ lymphocytes rearranging TCRâ€Î³Î´genes in LATâ€deficient mice. European Journal of Immunology, 2009, 39, 2596-2605.	1.6	3
52	Alloantigenâ€specific <i>de novoâ€</i> induced Foxp3 ⁺ Treg revert <i>in vivo</i> and do not protect from experimental GVHD. European Journal of Immunology, 2009, 39, 3091-3096.	1.6	127
53	Loss of the LAT Adaptor Converts Antigen-Responsive T Cells into Pathogenic Effectors that Function Independently of the T Cell Receptor. Immunity, 2009, 31, 197-208.	6.6	105
54	Insights into Langerhans cell function from Langerhans cell ablation models. European Journal of Immunology, 2008, 38, 2369-2376.	1.6	132

Adrien Kissenpfennig

#	Article	IF	CITATIONS
55	Retrovirus-Specificity of Regulatory T Cells Is Neither Present nor Required in Preventing Retrovirus-Induced Bone Marrow Immune Pathology. Immunity, 2008, 29, 782-794.	6.6	52
56	Langerin Expressing Cells Promote Skin Immune Responses under Defined Conditions. Journal of Immunology, 2008, 180, 4722-4727.	0.4	106
57	Cutting Edge: Langerin+ Dendritic Cells in the Mesenteric Lymph Node Set the Stage for Skin and Gut Immune System Cross-Talk. Journal of Immunology, 2008, 180, 4361-4365.	0.4	49
58	Th2 Lymphoproliferative Disorder of <i>Lat Y136F</i> Mutant Mice Unfolds Independently of TCR-MHC Engagement and Is Insensitive to the Action of Foxp3+ Regulatory T Cells. Journal of Immunology, 2008, 180, 1565-1575.	0.4	165
59	Tumor Immunotherapy by Epicutaneous Immunization Requires Langerhans Cells. Journal of Immunology, 2008, 180, 1991-1998.	0.4	88
60	Antigen-specific T-T interactions regulate CD4 T-cell expansion. Blood, 2008, 112, 1249-1258.	0.6	57
61	ZAP-70 Restoration in Mice by In Vivo Thymic Electroporation. PLoS ONE, 2008, 3, e2059.	1.1	16
62	Identification of a novel population of Langerin+ dendritic cells. Journal of Experimental Medicine, 2007, 204, 3147-3156.	4.2	453
63	Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. Journal of Experimental Medicine, 2007, 204, 3133-3146.	4.2	378
64	Epidermal Langerhans Cells Are Dispensable for Humoral and Cell-Mediated Immunity Elicited by Gene Gun Immunization. Journal of Immunology, 2007, 179, 886-893.	0.4	55
65	The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. Journal of Experimental Medicine, 2007, 204, 3119-3131.	4.2	379
66	Mature DC from skin and skin-draining LN retain the ability to acquire and efficiently present targeted antigen. European Journal of Immunology, 2007, 37, 1184-1193.	1.6	23
67	Langerhans cells – revisiting the paradigm using genetically engineered mice. Trends in Immunology, 2006, 27, 132-139.	2.9	102
68	Visualization of the earliest steps of γδT cell development in the adult thymus. Nature Immunology, 2006, 7, 995-1003.	7.0	173
69	Disruption of the langerin / CD207 Gene Abolishes Birbeck Granules without a Marked Loss of Langerhans Cell Function. Molecular and Cellular Biology, 2005, 25, 88-99.	1.1	104
70	Dynamics and Function of Langerhans Cells In Vivo. Immunity, 2005, 22, 643-654.	6.6	870
71	Cloning and characterization of the mouse homologue of the human dendritic cell maturation marker CD208/DC-LAMP. European Journal of Immunology, 2003, 33, 2619-2629.	1.6	32
72	Identification of Mouse Langerin/CD207 in Langerhans Cells and Some Dendritic Cells of Lymphoid Tissues. Journal of Immunology, 2002, 168, 782-792.	0.4	150

#	Article	IF	CITATIONS
73	The mouse and human ICSF6 (DORA) genes map to the inflammatory bowel disease 1 locus and are embedded in an intron of a gene of unknown function. Immunogenetics, 2000, 52, 112-120.	1.2	18
74	A maternal genetic effect on the composition of mouse aggregation chimaeras. Genetical Research, 1995, 65, 29-40.	0.3	10