Chen Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/7004368/chen-chen-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56
papers1,869
citations24
h-index42
g-index56
ext. papers2,084
ext. citations4.8
avg, IF4.46
L-index

#	Paper	IF	Citations
56	Graphene Nanosheets and Shear Flow Induced Crystallization in Isotactic Polypropylene Nanocomposites. <i>Macromolecules</i> , 2011 , 44, 2808-2818	5.5	143
55	A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22398		127
54	Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. <i>Polymer International</i> , 2012 , 61, 1107-1114	3.3	103
53	Super-tough conducting carbon nanotube/ultrahigh-molecular-weight polyethylene composites with segregated and double-percolated structure. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23568		102
52	The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets. <i>Carbon</i> , 2011 , 49, 1980-1988	10.4	99
51	Characterization of PA6/EPDM-g-MA/HDPE ternary blends: The role of core-shell structure. <i>Polymer</i> , 2012 , 53, 3043-3051	3.9	94
50	Cocontinuous morphology of immiscible high density polyethylene/polyamide 6 blend induced by multiwalled carbon nanotubes network. <i>European Polymer Journal</i> , 2012 , 48, 350-361	5.2	74
49	Selective localization of carbon nanotubes at the interface of Poly(L-lactide)/Ethylene-co-vinyl Acetate resulting in lowered electrical resistivity. <i>Composites Part B: Engineering</i> , 2013 , 55, 463-469	10	65
48	Promoting Osseointegration of Ti Implants through Micro/Nanoscaled Hierarchical Ti Phosphate/Ti Oxide Hybrid Coating. <i>ACS Nano</i> , 2018 , 12, 7883-7891	16.7	63
47	Preparation of PVA hydrogel with high-transparence and investigations of its transparent mechanism. <i>RSC Advances</i> , 2015 , 5, 24023-24030	3.7	60
46	Electrically conductive carbon nanotube/ultrahigh molecular weight polyethylene composites with segregated and double percolated structure. <i>Materials Letters</i> , 2012 , 79, 96-99	3.3	60
45	Synergistic effect of ammonium polyphosphate and expandable graphite on flame-retardant properties of acrylonitrile-butadiene-styrene. <i>Journal of Applied Polymer Science</i> , 2012 , 126, 1337-1343	2.9	58
44	Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application. <i>ACS Applied Materials & Description (Materials & Des</i>	9 9.5	56
43	Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. <i>Biopolymers</i> , 2012 , 97, 825-39	2.2	50
42	A Bioinspired Platform for Effective Delivery of Protein Therapeutics to the Central Nervous System. <i>Advanced Materials</i> , 2019 , 31, e1807557	24	47
41	Graphene Oxide Nanosheet Induced Intrachain Conformational Ordering in a Semicrystalline Polymer. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 530-5	6.4	47
40	Suppressing the skin-core structure of injection-molded isotactic polypropylene via combination of an in situ microfibrillar network and an interfacial compatibilizer. <i>Journal of Physical Chemistry B</i> , 2011 . 115. 7497-504	3.4	41

(2015-2012)

39	Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. <i>Journal of Polymer Research</i> , 2012 , 19, 1	2.7	39
38	Fabrication of silver-incorporated TiO2 nanotubes and evaluation on its antibacterial activity. <i>Materials Letters</i> , 2014 , 137, 464-467	3.3	34
37	Carbon nanotubes induced microstructure and mechanical properties changes in cocontinuous poly(L-lactide)/ethylene-co-vinyl acetate blends. <i>Polymers for Advanced Technologies</i> , 2012 , 23, 783-796	0 ^{3.2}	34
36	Largely enhanced ductility of immiscible high density polyethylene/polyamide 6 blends via nano-bridge effect of functionalized multiwalled carbon nanotubes. <i>Polymers for Advanced Technologies</i> , 2011 , 22, 2533-2542	3.2	32
35	Graphene Oxide-Templated Synthesis of Hydroxyapatite Nanowhiskers To Improve the Mechanical and Osteoblastic Performance of Poly(lactic acid) for Bone Tissue Regeneration. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3862-3869	8.3	31
34	Compatibilization of natural rubber/high density polyethylene thermoplastic vulcanizate with graphene oxide through ultrasonically assisted latex mixing. <i>Journal of Applied Polymer Science</i> , 2013 , 127, 933-941	2.9	26
33	Preparation, structure and properties of thermoplastic olefin nanocomposites containing functionalized carbon nanotubes. <i>Polymer International</i> , 2011 , 60, 1629-1637	3.3	25
32	Dynamic Electrical and Rheological Percolation in Isotactic Poly(propylene)/Carbon Black Composites. <i>Macromolecular Materials and Engineering</i> , 2012 , 297, 51-59	3.9	24
31	Surface bioactivation through the nanostructured layer on titanium modified by facile HPT treatment. <i>Scientific Reports</i> , 2017 , 7, 4155	4.9	24
30	Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures. <i>Journal of Materials Science</i> , 2013 , 48, 4892-4898	4.3	23
29	Toughening of poly(L-lactide)/multiwalled carbon nanotubes nanocomposite with ethylene-co-vinyl acetate. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 267-276	2.6	23
28	Effect of compatibilizer and clay on morphology and fracture resistance of immiscible high density polyethylene/polyamide 6 blend. <i>Composites Part B: Engineering</i> , 2013 , 54, 422-430	10	20
27	Conductive network formation during annealing of an oriented polyethylene-based composite. Journal of Materials Science, 2012 , 47, 3713-3719	4.3	19
26	Enhancement effect of filler network on isotactic polypropylene/carbon black composite melts. <i>Colloid and Polymer Science</i> , 2011 , 289, 1673-1681	2.4	18
25	Oppositely Charged Polyurethane Microspheres with Tunable Zeta Potentials as an Injectable Dual-Loaded System for Bone Repair. <i>ACS Applied Materials & Discourt </i>	9.5	17
24	Morphology and mechanical property changes in compatibilized high density polyethylene/polyamide 6 nanocomposites induced by carbon nanotubes. <i>Polymer International</i> , 2012 , 61, 1334-1343	3.3	17
23	Suppressing of Etrystal formation in metallocene-based isotactic polypropylene during isothermal crystallization under shear flow. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 5056-63	3.4	16
22	Unexpected observation of highly thermostable transcrystallinity of poly(lactic acid) induced by aligned carbon nanotubes. <i>European Polymer Journal</i> , 2015 , 63, 177-185	5.2	15

21	Influence of the Compaction Temperature on the Electrical and Mechanical Properties of the Segregated Conductive Ultrahigh Molecular Weight Polyethylene/Carbon Nanotube Composite. <i>Polymer-Plastics Technology and Engineering</i> , 2012 , 51, 1530-1536		13
20	Segregated Conductive Ultrahigh-Molecular-Weight Polyethylene Composites Containing High-Density Polyethylene as Carrier Polymer of Graphene Nanosheets. <i>Polymer-Plastics Technology and Engineering</i> , 2012 , 51, 1483-1486		13
19	Non-isothermal crystallization of ethylene-vinyl acetate copolymer containing a high weight fraction of graphene nanosheets and carbon nanotubes. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2012 , 30, 879-892	3.5	13
18	Quaternization on polyetheretherketone and its antimicrobial activity. <i>Materials Letters</i> , 2019 , 235, 242	2-3.45	11
17	High-Density Polyethylene/Ground Tyre Rubber Blends: Effective Dispersion and Mechanical Property Enhancement through Solid-State Mechanochemical Milling. <i>Progress in Rubber, Plastics and Recycling Technology</i> , 2012 , 28, 81-94	1.7	10
16	The Resistivity Response of an Anisotropically Conductive Polymer Composite with in-situ Conductive Microfibrils During Cooling. <i>Polymer-Plastics Technology and Engineering</i> , 2011 , 50, 1511-15	14	10
15	Cloning and expression study of a putative carotene biosynthesis related (cbr) gene from the halotolerant green alga Dunaliella salina. <i>Molecular Biology Reports</i> , 2008 , 35, 321-7	2.8	9
14	Fabrication of nano-hydroxyapatite/chitosan membrane with asymmetric structure and its applications in guided bone regeneration. <i>Bio-Medical Materials and Engineering</i> , 2017 , 28, 223-233	1	8
13	Preparation and properties of carbon nanotube/binary-polymer composites with a double-segregated structure. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	7
12	In-situ synchrotron x-ray scattering study on isothermal crystallization of ethylene-vinyl acetate copolymers containing a high weight fraction of carbon nanotubes and graphene nanosheets. <i>Journal of Polymer Research</i> , 2012 , 19, 1	2.7	7
11	Biodegradable chitosan-based composites with dual functions acting as the bone scaffold and the inflammation inhibitor in the treatment of bone defects. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2018 , 67, 703-710	3	6
10	Enhanced foamability of isotactic polypropylene composites by polypropylene-graft-carbon nanotube. <i>Journal of Applied Polymer Science</i> , 2013 , 130, 961-968	2.9	6
9	Interfacial Engineering of Graphene Nanosheets at MgO Particles for Thermal Conductivity Enhancement of Polymer Composites. <i>Nanomaterials</i> , 2019 , 9,	5.4	5
8	Effects of Ethylene-Vinyl Acetate Copolymer on the Morphology and Mechanical Properties of Hydroxyapatite/Polyamide 66 Composites for Bone Tissue Engineering. <i>Polymer-Plastics Technology and Engineering</i> , 2014 , 53, 290-297		5
7	High-pressure crystallization of poly(lactic acid) with and without N2 atmosphere protection. Journal of Materials Science, 2013 , 48, 7374-7383	4.3	4
6	Fabrication of an integrated cartilage/bone joint prosthesis and its potential application in joint replacement. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2016 , 59, 265-271	4.1	4
5	A facile strategy to modulate the fluorescent properties of star polymers by varying the arm numbers. <i>Journal of Polymer Research</i> , 2012 , 19, 1	2.7	3
4	3D-Printing Biodegradable PU/PAAM/Gel Hydrogel Scaffold with High Flexibility and Self-Adaptibility to Irregular Defects for Nonload-Bearing Bone Regeneration. <i>Bioconjugate Chemistry</i> , 2021 , 32, 1915-1925	6.3	3

LIST OF PUBLICATIONS

3	Reconstruction. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 1793-1803	5.5	3
2	Mechanistic insights into the room temperature transitions of polytetrafluoroethylene during electron-beam irradiation. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2017 , 410, 188-192	1.2	2

Isothermal-Treatment-Induced Network Formation of Carbon Black in Isotactic
Polypropylene/Carbon Black Composites. *Journal of Macromolecular Science - Physics*, **2013**, 52, 762-772 1.4 1