
Qingli Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7004336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Over-expression of CYP6A2 is associated with spirotetramat resistance and cross-resistance in the resistant strain of Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 2016, 126, 64-69.	3.6	76
2	Expression profile changes of cytochrome P450 genes between thiamethoxam susceptible and resistant strains of Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 2018, 149, 1-7.	3.6	57
3	Contribution of cytochrome P450 monooxygenase CYP380C6 to spirotetramat resistance in Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 2018, 148, 182-189.	3.6	53
4	Elevated expression of esterase and cytochrome P450 are related with lambda–cyhalothrin resistance and lead to cross resistance in Aphis glycines Matsumura. Pesticide Biochemistry and Physiology, 2015, 118, 77-81.	3.6	51
5	Thiamethoxam Resistance in Aphis gossypii Glover Relies on Multiple UDP-Glucuronosyltransferases. Frontiers in Physiology, 2018, 9, 322.	2.8	51
6	Biochemical characterization of acetylcholinesterase, cytochrome P450 and cross-resistance in an omethoate-resistant strain of Aphis gossypii Glover. Crop Protection, 2012, 31, 15-20.	2.1	47
7	Cross-resistance pattern and basis of resistance in a thiamethoxam-resistant strain of Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 2017, 138, 91-96.	3.6	44
8	Spirotetramat resistance adaption analysis of Aphis gossypii Glover by transcriptomic survey. Pesticide Biochemistry and Physiology, 2015, 124, 73-80.	3.6	41
9	Reduced abundance of the CYP6CY3-targeting let-7 and miR-100 miRNAs accounts for host adaptation of Myzus persicae nicotianae. Insect Biochemistry and Molecular Biology, 2016, 75, 89-97.	2.7	40
10	UDP-glucosyltransferases potentially contribute to imidacloprid resistance in Aphis gossypii glover based on transcriptomic and proteomic analyses. Pesticide Biochemistry and Physiology, 2019, 159, 98-106.	3.6	39
11	Transcriptomic comparison of thiamethoxam-resistance adaptation in resistant and susceptible strains of Aphis gossypii Clover. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2015, 13, 10-15.	1.0	35
12	miR-276 and miR-3016-modulated expression of acetyl-CoA carboxylase accounts for spirotetramat resistance in Aphis gossypii Glover. Insect Biochemistry and Molecular Biology, 2016, 79, 57-65.	2.7	31
13	Characterization of UDP-Glucuronosyltransferases and the Potential Contribution to Nicotine Tolerance in Myzus persicae. International Journal of Molecular Sciences, 2019, 20, 3637.	4.1	30
14	UDP-glycosyltransferases contribute to spirotetramat resistance in Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 2020, 166, 104565.	3.6	28
15	Functional validation of key cytochrome P450 monooxygenase and UDP-glycosyltransferase genes conferring cyantraniliprole resistance in Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 2021, 176, 104879.	3.6	27
16	Proteomics-based identification and analysis proteins associated with spirotetramat tolerance in Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 2015, 119, 74-80.	3.6	25
17	Extensive <i>Ace2</i> duplication and multiple mutations on <i>Ace1</i> and <i>Ace2</i> are related with high level of organophosphates resistance in <i>Aphis gossypii</i> . Environmental Toxicology, 2014, 29, 526-533.	4.0	24
18	Resistance Risk Assessment of the Ryanoid Anthranilic Diamide Insecticide Cyantraniliprole in <i>Aphis gossypii</i> Glover. Journal of Agricultural and Food Chemistry, 2021, 69, 5849-5857.	5.2	24

QINGLI SHANG

#	Article	IF	CITATIONS
19	Transcription Factors AhR/ARNT Regulate the Expression of CYP6CY3 and CYP6CY4 Switch Conferring Nicotine Adaptation. International Journal of Molecular Sciences, 2019, 20, 4521.	4.1	23
20	Down-regulated transcriptional level of Ace1 combined with mutations in Ace1 and Ace2 of Aphis gossypii are related with omethoate resistance. Chemico-Biological Interactions, 2010, 188, 553-557.	4.0	21
21	Multiple ATP-binding cassette transporters genes are involved in thiamethoxam resistance in Aphis gossypii glover. Pesticide Biochemistry and Physiology, 2020, 167, 104558.	3.6	20
22	Chemosensory proteins confer adaptation to the ryanoid anthranilic diamide insecticide cyantraniliprole in Aphis gossypii glover. Pesticide Biochemistry and Physiology, 2022, 184, 105076.	3.6	16
23	Rapid evolution of symbiotic bacteria populations in spirotetramat-resistant Aphis gossypii glover revealed by pyrosequencing. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2016, 20, 151-158.	1.0	13
24	Characterization of the Cap â€~n' Collar Isoform C gene in Spodoptera frugiperda and its Association with Superoxide Dismutase. Insects, 2020, 11, 221.	2.2	10
25	Functional investigation of <scp>IncRNAs</scp> and target cytochrome <scp>P450</scp> genes related to spirotetramat resistance in <i>Aphis gossypii</i> Glover. Pest Management Science, 2022, 78, 1982-1991.	3.4	10
26	Comparative proteomic analysis in Aphis glycines Mutsumura under lambda-cyhalothrin insecticide stress. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2016, 19, 90-96.	1.0	8
27	Chemosensory Proteins Are Associated with Thiamethoxam and Spirotetramat Tolerance in Aphis gossypii Glover. International Journal of Molecular Sciences, 2022, 23, 2356.	4.1	8
28	Functional analysis of cyantraniliprole tolerance ability mediated by ATP-binding cassette transporters in Aphis gossypii glover. Pesticide Biochemistry and Physiology, 2022, 184, 105104.	3.6	7
29	Molecular Cloning and Characterization of Five Glutathione S-Transferase Genes and Promoters from Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) and Their Response to Tannic Acid Stress. Insects, 2020, 11, 339.	2.2	6
30	Identification and the potential roles of long non-coding RNAs in regulating acetyl-CoA carboxylase ACC transcription in spirotetramat-resistant Aphis gossypii. Pesticide Biochemistry and Physiology, 2021, 179, 104972.	3.6	5