Naoya Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7004309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ALK Inhibitor Ceritinib Overcomes Crizotinib Resistance in Non–Small Cell Lung Cancer. Cancer Discovery, 2014, 4, 662-673.	7.7	720
2	Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Science, 2003, 94, 15-21.	1.7	461
3	Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. Journal of Cell Biology, 2003, 161, 417-427.	2.3	339
4	Domain Mapping Studies Reveal That the M Domain of hsp90 Serves as a Molecular Scaffold to Regulate Akt-Dependent Phosphorylation of Endothelial Nitric Oxide Synthase and NO Release. Circulation Research, 2002, 90, 866-873.	2.0	325
5	Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nature Communications, 2017, 8, 14768.	5.8	306
6	Akt-dependent Phosphorylation of p27Kip1Promotes Binding to 14-3-3 and Cytoplasmic Localization. Journal of Biological Chemistry, 2002, 277, 28706-28713.	1.6	297
7	Two Novel ALK Mutations Mediate Acquired Resistance to the Next-Generation ALK Inhibitor Alectinib. Clinical Cancer Research, 2014, 20, 5686-5696.	3.2	261
8	Pim Kinases Promote Cell Cycle Progression by Phosphorylating and Down-regulating p27Kip1 at the Transcriptional and Posttranscriptional Levels. Cancer Research, 2008, 68, 5076-5085.	0.4	260
9	Molecular Identification of Aggrus/T1α as a Platelet Aggregation-inducing Factor Expressed in Colorectal Tumors. Journal of Biological Chemistry, 2003, 278, 51599-51605.	1.6	247
10	Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene, 2002, 21, 1727-1738.	2.6	219
11	Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis. Oncogene, 1999, 18, 1131-1138.	2.6	215
12	Enhanced Expression of Aggrus (T1alpha/Podoplanin), a Platelet-Aggregation-Inducing Factor in Lung Squamous Cell Carcinoma. Tumor Biology, 2005, 26, 195-200.	0.8	201
13	Cytotoxic Activity of Tivantinib (ARQ 197) Is Not Due Solely to c-MET Inhibition. Cancer Research, 2013, 73, 3087-3096.	0.4	194
14	Involvement of Hsp90 in Signaling and Stability of 3-Phosphoinositide-dependent Kinase-1. Journal of Biological Chemistry, 2002, 277, 10346-10353.	1.6	186
15	The Platelet Aggregation-Inducing Factor Aggrus/Podoplanin Promotes Pulmonary Metastasis. American Journal of Pathology, 2007, 170, 1337-1347.	1.9	173
16	Platelets Promote Tumor Growth and Metastasis via Direct Interaction between Aggrus/Podoplanin and CLEC-2. PLoS ONE, 2013, 8, e73609.	1.1	173
17	Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non–small cell lung cancer. Journal of Experimental Medicine, 2019, 216, 982-1000.	4.2	173
18	Cabozantinib Overcomes Crizotinib Resistance in ROS1 Fusion–Positive Cancer. Clinical Cancer Research, 2015, 21, 166-174.	3.2	172

#	Article	IF	CITATIONS
19	Phosphorylation of p27Kip1 at Threonine 198 by p90 Ribosomal Protein S6 Kinases Promotes Its Binding to 14-3-3 and Cytoplasmic Localization. Journal of Biological Chemistry, 2003, 278, 49254-49260.	1.6	169
20	Ceramide and Reactive Oxygen Species Generated by H2O2 Induce Caspase-3-independent Degradation of Akt/Protein Kinase B. Journal of Biological Chemistry, 2002, 277, 42943-42952.	1.6	160
21	Acceleration of apoptotic cell death after the cleavage of Bcl-XL protein by caspase-3-like proteases. Oncogene, 1998, 17, 1295-1304.	2.6	158
22	Aggrus: a diagnostic marker that distinguishes seminoma from embryonal carcinoma in testicular germ cell tumors. Oncogene, 2004, 23, 8552-8556.	2.6	143
23	Binding and Phosphorylation of Par-4 by Akt Is Essential for Cancer Cell Survival. Molecular Cell, 2005, 20, 33-44.	4.5	143
24	Akt/Protein Kinase B-Dependent Phosphorylation and Inactivation of WEE1Hu Promote Cell Cycle Progression at G2/M Transition. Molecular and Cellular Biology, 2005, 25, 5725-5737.	1.1	141
25	Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26245-26253.	3.3	137
26	P-glycoprotein Mediates Ceritinib Resistance in Anaplastic Lymphoma Kinase-rearranged Non-small Cell Lung Cancer. EBioMedicine, 2016, 3, 54-66.	2.7	123
27	Podoplanin expression in primary central nervous system germ cell tumors: a useful histological marker for the diagnosis of germinoma. Acta Neuropathologica, 2006, 111, 563-568.	3.9	121
28	Fak/Src signaling in human intestinal epithelial cell survival and anoikis: Differentiation state-specific uncoupling with the PI3-K/Akt-1 and MEK/Erk pathways. Journal of Cellular Physiology, 2007, 212, 717-728.	2.0	117
29	Involvement of the Lysophosphatidic Acid-Generating Enzyme Autotaxin in Lymphocyte-Endothelial Cell Interactions. American Journal of Pathology, 2008, 173, 1566-1576.	1.9	107
30	Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nature Communications, 2015, 6, 8419.	5.8	107
31	The new-generation selective ROS1/NTRK inhibitor DS-6051b overcomes crizotinib resistant ROS1-G2032R mutation in preclinical models. Nature Communications, 2019, 10, 3604.	5.8	99
32	Involvement of 3-Phosphoinositide-dependent Protein Kinase-1 in the MEK/MAPK Signal Transduction Pathway. Journal of Biological Chemistry, 2004, 279, 33759-33767.	1.6	93
33	Prediction of ALK mutations mediating ALK-TKIs resistance and drug re-purposing to overcome the resistance. EBioMedicine, 2019, 41, 105-119.	2.7	93
34	Topotecan inhibits VEGF- and bFGF-induced vascular endothelial cell migration via downregulation of the PI3K-Akt signaling pathway. International Journal of Cancer, 2002, 98, 36-41.	2.3	92
35	Cleavage and inactivation of antiapoptotic Akt/PKB by caspases during apoptosis. Journal of Cellular Physiology, 2000, 182, 290-296.	2.0	90
36	The Cleavage of Akt/Protein Kinase B by Death Receptor Signaling Is an Important Event in Detachment-induced Apoptosis. Journal of Biological Chemistry, 2001, 276, 34702-34707.	1.6	89

#	Article	IF	CITATIONS
37	Regulation of Kinase Activity of 3-Phosphoinositide-dependent Protein Kinase-1 by Binding to 14-3-3. Journal of Biological Chemistry, 2002, 277, 39360-39367.	1.6	89
38	Functional Sialylated O-Glycan to Platelet Aggregation on Aggrus (T1α/Podoplanin) Molecules Expressed in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2004, 279, 38838-38843.	1.6	88
39	Involvement of mitochondrial aggregation in arsenic trioxide (As2O3)-induced apoptosis in human glioblastoma cells. Cancer Science, 2005, 96, 825-833.	1.7	87
40	Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement. Journal of Cell Biology, 2009, 187, 607-614.	2.3	87
41	3-Phosphoinositide-dependent Protein Kinase-1-mediated lîºB Kinase β (IKKB) Phosphorylation Activates NF-κB Signaling. Journal of Biological Chemistry, 2005, 280, 40965-40973.	1.6	86
42	A critical role of platelet TGF-β release in podoplanin-mediated tumour invasion and metastasis. Scientific Reports, 2017, 7, 42186.	1.6	86
43	Mitochondrial aggregation precedes cytochrome c release from mitochondria during apoptosis. Oncogene, 2003, 22, 5579-5585.	2.6	83
44	NH2-terminal BH4 Domain of Bcl-2 Is Functional for Heterodimerization with Bax and Inhibition of Apoptosis. Journal of Biological Chemistry, 1999, 274, 20415-20420.	1.6	82
45	Mechanisms of Resistance to NTRK Inhibitors and Therapeutic Strategies in NTRK1-Rearranged Cancers. Molecular Cancer Therapeutics, 2017, 16, 2130-2143.	1.9	82
46	Critical involvement of the phosphatidylinositol 3-kinase/Akt pathway in anchorage-independent growth and hematogeneous intrahepatic metastasis of liver cancer. Cancer Research, 2002, 62, 2971-5.	0.4	80
47	Cleavage and inactivation of antiapoptotic Akt/PKB by caspases during apoptosis. Journal of Cellular Physiology, 2000, 182, 290.	2.0	79
48	Tetraspanin family member CD9 inhibits Aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood, 2008, 112, 1730-1739.	0.6	77
49	Platelet aggregation in the formation of tumor metastasis. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2008, 84, 189-198.	1.6	75
50	Transforming Growth Factor-β Induces Expression of Receptor Activator of NF-κB Ligand in Vascular Endothelial Cells Derived from Bone. Journal of Biological Chemistry, 2002, 277, 26217-26224.	1.6	73
51	Dofequidar fumarate sensitizes cancer stemâ€like side population cells to chemotherapeutic drugs by inhibiting ABCG2/BCRPâ€mediated drug export. Cancer Science, 2009, 100, 2060-2068.	1.7	73
52	Platelets promote osteosarcoma cell growth through activation of the plateletâ€derived growth factor receptorâ€Akt signaling axis. Cancer Science, 2014, 105, 983-988.	1.7	72
53	Involvement of Bcl-2 Cleavage in the Acceleration of VP-16-Induced U937 Cell Apoptosis. Biochemical and Biophysical Research Communications, 1998, 246, 484-488.	1.0	71
54	β1 integrin/Fak/Src signaling in intestinal epithelial crypt cell survival: integration of complex regulatory mechanisms. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 531-542.	2.2	71

#	Article	IF	CITATIONS
55	Insulin-stimulated Interaction with 14-3-3 Promotes Cytoplasmic Localization of Lipin-1 in Adipocytes. Journal of Biological Chemistry, 2010, 285, 3857-3864.	1.6	71
56	Human Intestinal Epithelial Cell Survival and Anoikis. Journal of Biological Chemistry, 2004, 279, 44113-44122.	1.6	70
57	<i>APC</i> Mutations as a Potential Biomarker for Sensitivity to Tankyrase Inhibitors in Colorectal Cancer. Molecular Cancer Therapeutics, 2017, 16, 752-762.	1.9	67
58	Casein Kinase 2–Interacting Protein-1, a Novel Akt Pleckstrin Homology Domain-Interacting Protein, Down-regulates PI3K/Akt Signaling and Suppresses Tumor Growth <i>In vivo</i> . Cancer Research, 2007, 67, 9666-9676.	0.4	64
59	Platelet-activating factor podoplanin: from discovery to drug development. Cancer and Metastasis Reviews, 2017, 36, 225-234.	2.7	64
60	Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis. Oncotarget, 2016, 7, 3934-3946.	0.8	64
61	PRMT5, a Novel TRAIL Receptor-Binding Protein, Inhibits TRAIL-Induced Apoptosis via Nuclear Factor-κB Activation. Molecular Cancer Research, 2009, 7, 557-569.	1.5	63
62	Intestinal epithelial cancer cell anoikis resistance: EGFRâ€mediated sustained activation of Src overrides Fakâ€dependent signaling to MEK/Erk and/or PI3â€K/Aktâ€1. Journal of Cellular Biochemistry, 2009, 107, 639-654.	1.2	60
63	Freud-1/Aki1, a Novel PDK1-Interacting Protein, Functions as a Scaffold To Activate the PDK1/Akt Pathway in Epidermal Growth Factor Signaling. Molecular and Cellular Biology, 2008, 28, 5996-6009.	1.1	59
64	Tivantinib (ARQ 197) Exhibits Antitumor Activity by Directly Interacting with Tubulin and Overcomes ABC Transporter–Mediated Drug Resistance. Molecular Cancer Therapeutics, 2014, 13, 2978-2990.	1.9	57
65	Human intestinal epithelial crypt cell survival and death: Complex modulations of Bcl-2 homologs by Fak, PI3-K/Akt-1, MEK/Erk, and p38 signaling pathways. Journal of Cellular Physiology, 2004, 198, 209-222.	2.0	56
66	AP-1-Dependent miR-21 Expression Contributes to Chemoresistance in Cancer Stem Cell-Like SP Cells. Oncology Research, 2010, 19, 23-33.	0.6	56
67	Involvement of FKHR-Dependent TRADD Expression in Chemotherapeutic Drug-Induced Apoptosis. Molecular and Cellular Biology, 2002, 22, 8695-8708.	1.1	55
68	Production of interleukin-11 in bone-derived endothelial cells and its role in the formation of osteolytic bone metastasis. Oncogene, 1998, 16, 693-703.	2.6	54
69	Basic Fibroblast Growth Factor Induces Cyclooxygenase-2 Expression in Endothelial Cells Derived from Bone. Biochemical and Biophysical Research Communications, 1999, 254, 259-263.	1.0	52
70	The impact of Aggrus/podoplanin on platelet aggregation and tumour metastasis. Journal of Biochemistry, 2012, 152, 407-413.	0.9	52
71	Gilteritinib overcomes lorlatinib resistance in ALK-rearranged cancer. Nature Communications, 2021, 12, 1261.	5.8	52
72	Suppression of Interleukin-11-mediated bone resorption by cyclooxygenases inhibitors. , 1998, 175, 247-254.		51

#	Article	IF	CITATIONS
73	Differentiation of Lymphatic Endothelial Cells From Embryonic Stem Cells on OP9 Stromal Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2070-2076.	1.1	51
74	CXCL13 is an arrest chemokine for B cells in high endothelial venules. Blood, 2005, 106, 2613-2618.	0.6	49
75	Stimulation of interleukin-11 production from osteoblast-like cells by transforming growth factor-Î ² and tumor cell factors. , 1997, 71, 422-428.		48
76	Prevention of hematogenous metastasis by neutralizing mice and its chimeric antiâ€Aggrus/podoplanin antibodies. Cancer Science, 2011, 102, 2051-2057.	1.7	47
77	p27 Kip1 localization depends on the tumor suppressor protein tuberin. Human Molecular Genetics, 2007, 16, 1541-1556.	1.4	45
78	p21Waf1/cip1 acts in synergy with bcl-2 to confer multidrug resistance in a camptothecin-selected human lung-cancer cell line. , 1999, 83, 790-797.		39
79	The Novel Metastasis Promoter Merm1/Wbscr22 Enhances Tumor Cell Survival in the Vasculature by Suppressing Zac1/p53-Dependent Apoptosis. Cancer Research, 2011, 71, 1146-1155.	0.4	39
80	Drug resistance mechanisms in Japanese anaplastic lymphoma kinaseâ€positive non–small cell lung cancer and the clinical responses based on the resistant mechanisms. Cancer Science, 2020, 111, 932-939.	1.7	39
81	Stabilization of integrin-linked kinase by binding to Hsp90. Biochemical and Biophysical Research Communications, 2005, 331, 1061-1068.	1.0	38
82	Expression of Aggrus/podoplanin in bladder cancer and its role in pulmonary metastasis. International Journal of Cancer, 2014, 134, 2605-2614.	2.3	38
83	H-31 human breast cancer cells stimulate type I collagenase production in osteoblast-like cells and induce bone resorption. Clinical and Experimental Metastasis, 1995, 13, 287-295.	1.7	34
84	Podoplanin enhances lung cancer cell growth in vivo by inducing platelet aggregation. Scientific Reports, 2017, 7, 4059.	1.6	34
85	Cell-permeable Carboxyl-terminal p27Kip1 Peptide Exhibits Anti-tumor Activity by Inhibiting Pim-1 Kinase. Journal of Biological Chemistry, 2011, 286, 2681-2688.	1.6	29
86	Two populations of Thy1-positive mesenchymal cells regulate in vitro maturation of hepatic progenitor cells. American Journal of Physiology - Renal Physiology, 2007, 292, G526-G534.	1.6	28
87	TUSC4/NPRL2, a novel PDK1â€interacting protein, inhibits PDK1 tyrosine phosphorylation and its downstream signaling. Cancer Science, 2008, 99, 1827-1834.	1.7	26
88	Modulation of Wnt signaling by the nuclear localization of cellular FLIP-L. Journal of Cell Science, 2010, 123, 23-28.	1.2	26
89	Overcoming resistance by ALK compound mutation (I1171S + G1269A) after sequential treatment of multiple ALK inhibitors in nonâ \in small cell lung cancer. Thoracic Cancer, 2020, 11, 581-587.	0.8	26
90	Survival-signaling pathway as a promising target for cancer chemotherapy. Cancer Chemotherapy and Pharmacology, 2003, 52, 24-28.	1.1	25

#	Article	IF	CITATIONS
91	Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors. Oncotarget, 2018, 9, 1641-1655.	0.8	25
92	Biomarker discovery by integrated joint non-negative matrix factorization and pathway signature analyses. Scientific Reports, 2018, 8, 9743.	1.6	25
93	Control of Apoptosis and Growth of Malignant T Lymphoma Cells by Lymph Node Stromal Cells. Experimental Cell Research, 1993, 207, 271-276.	1.2	24
94	Identification of Mutation Accumulation as Resistance Mechanism Emerging in First-Line Osimertinib Treatment. Journal of Thoracic Oncology, 2018, 13, 915-925.	0.5	22
95	Soluble PD-L1 works as a decoy in lung cancer immunotherapy via alternative polyadenylation. JCI Insight, 2022, 7, .	2.3	20
96	A novel anti-Thy-1 (CD90) monoclonal antibody induces apoptosis in mouse malignant T-lymphoma cells in spite of inducing bcl-2 expression. , 1996, 66, 544-550.		19
97	Aggregation of Thy-1 Glycoprotein Induces Thymocyte Apoptosis through Activation of CPP32-like Proteases. Experimental Cell Research, 1997, 232, 400-406.	1.2	19
98	Platelet-derived lysophosphatidic acid mediated LPAR1 activation as a therapeutic target for osteosarcoma metastasis. Oncogene, 2021, 40, 5548-5558.	2.6	17
99	In vivo veritas: Bcl-2 and Bcl-XLmediate tumor cell resistance to chemotherapy. Drug Resistance Updates, 2000, 3, 149-154.	6.5	16
100	Akt Kinase-Interacting Protein 1 Signals through CREB to Drive Diffuse Malignant Mesothelioma. Cancer Research, 2015, 75, 4188-4197.	0.4	16
101	Clonal Endothelial Cells Produce Humoral Factors that Inhibit Osteoclast-Like Cell Formation In Vitro Endocrine Journal, 2002, 49, 439-447.	0.7	15
102	Podoplanin promotes progression of malignant pleural mesothelioma by regulating motility and focus formation. Cancer Science, 2017, 108, 696-703.	1.7	15
103	A Novel Anti-Platelet Monoclonal Antibody Induces Mouse Platelet Aggregation through an Fc Receptor-Independent Mechanism. Biochemical and Biophysical Research Communications, 1998, 242, 250-255.	1.0	14
104	Reconstitution of Caspase-3 Confers Low Glucose-Enhanced Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Cytotoxicity and Akt Cleavage. Clinical Cancer Research, 2004, 10, 1894-1900.	3.2	13
105	Targeting Podoplanin for the Treatment of Osteosarcoma. Clinical Cancer Research, 2022, 28, 2633-2645.	3.2	12
106	Suppression of Aggrus/podoplaninâ€induced platelet aggregation and pulmonary metastasis by a singleâ€chain antibody variable region fragment. Cancer Medicine, 2014, 3, 1595-1604.	1.3	11
107	Microsecond-timescale MD simulation of EGFR minor mutation predicts the structural flexibility of EGFR kinase core that reflects EGFR inhibitor sensitivity. Npj Precision Oncology, 2021, 5, 32.	2.3	11
108	TKI-addicted ROS1-rearranged cells are destined to survival or death by the intensity of ROS1 kinase activity. Scientific Reports, 2017, 7, 5519.	1.6	10

#	Article	IF	CITATIONS
109	Expression of Akt Kinase-Interacting Protein 1, a Scaffold Protein of the PI3K/PDK1/Akt Pathway, in Pancreatic Cancer. Pancreas, 2014, 43, 1093-1100.	0.5	9
110	3D culture system containing gellan gum restores oncogene dependence in ROS1 rearrangements non-small cell lung cancer. Biochemical and Biophysical Research Communications, 2018, 501, 527-533.	1.0	8
111	Mitotic phosphorylation of Aki1 at Ser208 by cyclin B1–Cdk1 complex. Biochemical and Biophysical Research Communications, 2010, 393, 872-876.	1.0	7
112	Successive Phosphorylation of p27KIP1 Protein at Serine-10 and C Terminus Crucially Controls Its Potency to Inactivate Cdk2. Journal of Biological Chemistry, 2012, 287, 21757-21764.	1.6	7
113	Monitoring epidermal growth factor receptor C797S mutation in Japanese non–small cell lung cancer patients with serial cellâ€free DNA evaluation using digital droplet PCR. Cancer Science, 2021, 112, 2371-2380.	1.7	7
114	A safety study of newly generated anti-podoplanin-neutralizing antibody in cynomolgus monkey (<i>Macaca fascicularis</i>). Oncotarget, 2018, 9, 33322-33336.	0.8	7
115	Interleukin-1? induces cyclooxygenase-2 expression in bone-derived endothelial cells. Journal of Cellular Physiology, 1999, 179, 226-232.	2.0	6
116	GSK3 inhibition circumvents and overcomes acquired lorlatinib resistance in ALK-rearranged non-small-cell lung cancer. Npj Precision Oncology, 2022, 6, 16.	2.3	5
117	Novel knockâ€in mouse model for the evaluation of the therapeutic efficacy and toxicity of human podoplanin–targeting agents. Cancer Science, 2021, 112, 2299-2313.	1.7	4
118	A transmembrane glycoprotein, gp38, is a novel marker for immature hepatic progenitor cells in fetal mouse livers. In Vitro Cellular and Developmental Biology - Animal, 2011, 47, 45-53.	0.7	3
119	Efficacy of EGFR tyrosine kinase inhibitors in patients having EGFR-activating mutations with or without BIM polymorphisms. Cancer Chemotherapy and Pharmacology, 2020, 86, 517-525.	1.1	3
120	Acquired resistance to BRAF inhibitors is mediated by BRAF splicing variants in BRAF V600E mutation-positive colorectal neuroendocrine carcinoma. Cancer Letters, 2022, 543, 215799.	3.2	3
121	Adhesion of Pancreatic Cancer Cells in a Liver-Microvasculature Mimicking Coculture Correlates with Their Propensity to Form Liver-Specific Metastasis <i>In Vivo</i> . BioMed Research International, 2014, 2014, 1-13.	0.9	2
122	Abstract 2729: Suppression of hematogenous metastasis by mouse and murine/human chimeric anti-Aggrus/podoplanin antibodies. , 2012, , .		0