Hans-Joachim Knölker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7004116/publications.pdf

Version: 2024-02-01

269 papers

14,776 citations

²⁶⁶²⁶ 56
h-index

25787 108 g-index

288 all docs 288 docs citations

times ranked

288

10591 citing authors

#	Article	IF	CITATIONS
1	Ironâ€Catalyzed Oxidative Câ^'O and Câ^'N Coupling Reactions Using Air as Sole Oxidant**. Chemistry - A European Journal, 2022, 28, .	3.3	13
2	Palladiumâ€Catalyzed Synthesis of Alkylcarbazoles and Their Identification in Petroleum and Source Rocks**. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
3	Synthesis of indolo[2,3-a]carbazole via an intramolecular McMurry coupling. Arkivoc, 2021, 2020, 192-200.	0.5	3
4	First Total Synthesis and Investigation of the X-ray Crystal Structure of the Pyrano[3,2-a]carbazole Alkaloid ClausenalansineÂA. Synthesis, 2021, 53, 359-364.	2.3	1
5	In vitro and in vivo effects of inhibitors on actin and myosin. Bioorganic and Medicinal Chemistry, 2021, 30, 115928.	3.0	3
6	Cross-talk between the calcium channel TRPV4 and reactive oxygen species interlocks adhesive and degradative functions of invadosomes. Journal of Cell Biology, 2021, 220, .	5.2	10
7	UHPLC-IM-Q-ToFMS analysis of maradolipids, found exclusively in Caenorhabditis elegans dauer larvae. Analytical and Bioanalytical Chemistry, 2021, 413, 2091-2102.	3.7	6
8	Myosin 1c: A novel regulator of glucose uptake in brown adipocytes. Molecular Metabolism, 2021, 53, 101247.	6.5	1
9	Loss of Motor Protein MYO1C Causes Rhodopsin Mislocalization and Results in Impaired Visual Function. Cells, 2021, 10, 1322.	4.1	8
10	Ironâ€Catalyzed Wackerâ€type Oxidation of Olefins at Room Temperature with 1,3â€Diketones or Neocuproine as Ligands**. Angewandte Chemie - International Edition, 2021, 60, 14083-14090.	13.8	29
11	Ironâ€Catalyzed Wackerâ€type Oxidation of Olefins at Room Temperature with 1,3â€Diketones or Neocuproine as Ligands**. Angewandte Chemie, 2021, 133, 14202-14209.	2.0	12
12	Isolation and structure elucidation of pyridine alkaloids from the aerial parts of the Mongolian medicinal plant Caryopteris mongolica Bunge. Scientific Reports, 2021, 11, 13740.	3.3	4
13	Mechanistic Studies on the Hexadecafluorophthalocyanine–Ironâ€Catalyzed Wackerâ€Type Oxidation of Olefins to Ketones**. Chemistry - A European Journal, 2021, 27, 16776-16787.	3.3	11
14	Ironâ€Catalyzed Oxidative Câ^'C Crossâ€Coupling Reaction of Tertiary Anilines with Hydroxyarenes by Using Air as Sole Oxidant**. Chemistry - A European Journal, 2020, 26, 2499-2508.	3.3	23
15	Synthesis of Clausenal, 1,5â€Dimethoxycarbazoleâ€3â€carbaldehyde and 2,5â€Dimethoxycarbazoleâ€3â€carbaldehyde. European Journal of Organic Chemistry, 2020, 2020, 5572-5579.	2.4	4
16	Pharmacological Inhibition of Amyloidogenic APP Processing and Knock-Down of APP in Primary Human Macrophages Impairs the Secretion of Cytokines. Frontiers in Immunology, 2020, 11, 1967.	4.8	13
17	Development and Technical Validation of an Immunoassay for the Detection of APP669–711 (Aβâ^'3–40) in Biological Samples. International Journal of Molecular Sciences, 2020, 21, 6564.	4.1	12
18	Iron-Catalyzed Synthesis, Structure, and Photophysical Properties of Tetraarylnaphthidines. Molecules, 2020, 25, 1608.	3.8	12

#	Article	IF	CITATIONS
19	Synthesis and Crystal Structure of Dimorphic Dibenzo [cde, opq]rubicene. Chemistry - A European Journal, 2019, 25, 13759-13765.	3.3	8
20	Pentachloropseudilin Impairs Angiogenesis by Disrupting the Actin Cytoskeleton, Integrin Trafficking and the Cell Cycle. ChemBioChem, 2019, 20, 2390-2401.	2.6	7
21	The motor protein Myo1c regulates transforming growth factor-β–signaling and fibrosis in podocytes. Kidney International, 2019, 96, 139-158.	5.2	20
22	First Total Synthesis of 7-Isovaleryloxy-8-methoxygirinimbine. Synthesis, 2018, 50, 2516-2522.	2.3	5
23	Endocannabinoids in Caenorhabditis elegans are essential for the mobilization of cholesterol from internal reserves. Scientific Reports, 2018, 8, 6398.	3.3	32
24	Improved Specificity Prediction of Small Molecule Myosin Inhibitors through Ensemble-Based Molecular Docking. Biophysical Journal, 2018, 114, 681a.	0.5	0
25	Decoding Allosteric Networks in Biocatalysts: Rational Approach to Therapies and Biotechnologies. ACS Catalysis, 2018, 8, 2683-2692.	11.2	11
26	Pentachloropseudilin Inhibits Transforming Growth Factorâ€Î² (TGFâ€Î²) Activity by Accelerating Cellâ€Surface Type II TGFâ€Î² Receptor Turnover in Target Cells. ChemBioChem, 2018, 19, 851-864.	2.6	16
27	Myosin 1b promotes axon formation by regulating actin wave propagation and growth cone dynamics. Journal of Cell Biology, 2018, 217, 2033-2046.	5.2	27
28	Synthesis of 1,1′―and 2,2′â€Bicarbazole Alkaloids by Iron(III)â€Catalyzed Oxidative Coupling of 2―and 1â€Hydroxycarbazoles. Chemistry - A European Journal, 2018, 24, 458-470.	3.3	34
29	Conversion of Olefins into Ketones by an Ironâ€Catalyzed Wackerâ€type Oxidation Using Oxygen as the Sole Oxidant. Angewandte Chemie - International Edition, 2018, 57, 1222-1226.	13.8	47
30	Enantioselective Total Synthesis and Assignment of the Absolute Configuration of the Furo[3,2- <i>a</i>)carbazole Alkaloid Furoclausine-B. Journal of Organic Chemistry, 2018, 83, 15136-15143.	3.2	13
31	Lipidomimetic Compounds Act as HIV-1 Entry Inhibitors by Altering Viral Membrane Structure. Frontiers in Immunology, 2018, 9, 1983.	4.8	14
32	Pentabromopseudilin: a myosin V inhibitor suppresses TGF- $\langle b \rangle \hat{l}^2 \langle b \rangle$ activity by recruiting the type II TGF- $\langle b \rangle \hat{l}^2 \langle b \rangle$ receptor to lysosomal degradation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 920-935.	5.2	16
33	Synthesis and Activity against Mycobacterium tuberculosis of Olivacine and Oxygenated Derivatives. Molecules, 2018, 23, 1402.	3.8	12
34	Synthesis of Euchrestifoline Using Iron―and Palladium atalyzed C–H Bond Activations. European Journal of Organic Chemistry, 2018, 2018, 4272-4276.	2.4	13
35	Conversion of Olefins into Ketones by an Ironâ€Catalyzed Wackerâ€type Oxidation Using Oxygen as the Sole Oxidant. Angewandte Chemie, 2018, 130, 1236-1240.	2.0	11
36	Isolation and structure elucidation of natural products of three soft corals and a sponge from the coast of Madagascar. Organic and Biomolecular Chemistry, 2017, 15, 2593-2608.	2.8	38

#	Article	IF	Citations
37	First Total Synthesis of the Cytotoxic Carbazole Alkaloid Excavatineâ€A and Regioselective Annulation to Pyrano[2,3â€∢i>a⟨li>]carbazoles and [1,4]Oxazepino[2,3,4â€∢i>jk⟨li>]carbazoles. European Journal of Organic Chemistry, 2017, 2017, 3288-3300.	2.4	10
38	Iron atalyzed Oxidative Câ^'C and Nâ^'N Coupling of Diarylamines and Synthesis of Spiroacridines. Angewandte Chemie - International Edition, 2017, 56, 549-553.	13.8	64
39	Phosphorylated glycosphingolipids essential for cholesterol mobilization in Caenorhabditis elegans. Nature Chemical Biology, 2017, 13, 647-654.	8.0	23
40	Anti-tuberculosis activity and structure–activity relationships of oxygenated tricyclic carbazole alkaloids and synthetic derivatives. Bioorganic and Medicinal Chemistry, 2017, 25, 6167-6174.	3.0	28
41	Iron atalyzed Oxidative Câ^'C and Nâ^'N Coupling of Diarylamines and Synthesis of Spiroacridines. Angewandte Chemie, 2017, 129, 564-568.	2.0	28
42	Synthesis of Tetranuclear Palladium(II) Complexes and Their Catalytic Activity for Crossâ€Coupling Reactions. Chemistry - A European Journal, 2017, 23, 17576-17583.	3.3	7
43	Quantitative Structure–Retention Relationships for Polycyclic Aromatic Hydrocarbons and their Oligoalkynylâ€Substituted Derivatives. ChemistryOpen, 2017, 6, 519-525.	1.9	3
44	Reductive Eliminations from Diarylpalladium(II) Complexes: A Combined Experimental and Computational Investigation. Chemistry - A European Journal, 2017, 23, 15116-15123.	3.3	9
45	Myosin-1 inhibition by PCIP affects membrane shape, cortical actin distribution and lipid droplet dynamics in early Zebrafish embryos. PLoS ONE, 2017, 12, e0180301.	2.5	18
46	Synthesis of Stable Diarylpalladium(II) Complexes: Detailed Study of the Aryl–Aryl Bondâ€Forming Reductive Elimination. Chemistry - A European Journal, 2016, 22, 11186-11190.	3.3	20
47	Synthesis of Methyleneâ€Bridged Biscarbazole Alkaloids by using an Ullmannâ€type Coupling: First Total Synthesis of Murrastifolineâ€C and Murrafolineâ€E. Chemistry - A European Journal, 2016, 22, 2487-2500.	3.3	17
48	Solidâ€Phase Synthesis and Characterization of Nâ€Terminally Elongated Aβ _{â^³3–<i>x</i>} â€Peptides. Chemistry - A European Journal, 2016, 22, 8685-8693.	3.3	8
49	Palladium-Catalyzed Synthesis of Pyrayaquinones, MurrayaÂquinones, and Murrayafoline-B. Synthesis, 2016, 49, 275-292.	2.3	6
50	Synthesis of Glycoborine, Glybomine A and B, the Phytoalexin Carbalexin A and the βâ€Adrenoreceptor Antagonists Carazolol and Carvedilol. Chemistry - A European Journal, 2016, 22, 16897-16911.	3.3	25
51	Validation of soluble amyloidâ€Î² precursor protein assays as diagnostic <scp>CSF</scp> biomarkers for neurodegenerative diseases. Journal of Neurochemistry, 2016, 137, 112-121.	3.9	17
52	Chemical constituents isolated from <i>Zygophyllum melongena</i> Bunge growing in Mongolia. Natural Product Research, 2016, 30, 1661-1664.	1.8	11
53	The role of myosin 1c and myosin 1b for surfactant exocytosis. Journal of Cell Science, 2016, 129, 1685-96.	2.0	24
54	Chemical constituents of the soft corals Sinularia vanderlandi and Sinularia gravis from the coast of Madagascar. Organic and Biomolecular Chemistry, 2016, 14, 989-1001.	2.8	19

#	Article	IF	CITATIONS
55	Red Algae (Rhodophyta) from the Coast of Madagascar: Preliminary Bioactivity Studies and Isolation of Natural Products. Marine Drugs, 2015, 13, 4197-4216.	4.6	34
56	Synthesis of the Pyrano [3,2-a] carbazole Alkaloids Koenine, Koenimbine, Koenigine, Koenigicine, and Structural Reassignment of Mukonicine. Synthesis, 2015, 48, 150-160.	2.3	10
57	Iron Catalysis in Organic Synthesis. Chemical Reviews, 2015, 115, 3170-3387.	47.7	1,500
58	Myosin 1b functions as an effector of EphB signaling to control cell repulsion. Journal of Cell Biology, 2015, 210, 347-361.	5.2	32
59	Palladium-Catalyzed Approach to Malasseziazole A and First Total Synthesis of Malasseziazole C. Synlett, 2015, 26, 1549-1552.	1.8	16
60	Total Syntheses of Murrayamine E, I, and K. Journal of Organic Chemistry, 2015, 80, 5666-5673.	3.2	60
61	Myosin-Il-mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nature Cell Biology, 2015, 17, 397-408.	10.3	176
62	Total synthesis of glycomaurrol and eustifoline-C by DIBAL-H promoted reductive ring opening of pyrano [2,3-c] carbazoles. Tetrahedron, 2015, 71, 3485-3490.	1.9	22
63	Brown Algae (Phaeophyceae) from the Coast of Madagascar: preliminary Bioactivity Studies and Isolation of Natural Products. Natural Products and Bioprospecting, 2015, 5, 223-235.	4.3	18
64	Astrocytes and microglia but not neurons preferentially generate N-terminally truncated $\hat{Al^2}$ peptides. Neurobiology of Disease, 2015, 73, 24-35.	4.4	52
65	First Total Synthesis of Murrastifoline B and an Improved Route to Murrastifoline F. Synlett, 2014, 25, 1381-1384.	1.8	22
66	Synthesis of Carbalexin B, Clausine A, Clauszoline M, and 2,8-Dihydroxy-3-methylcarbazole. Synthesis, 2014, 46, 2651-2655.	2.3	15
67	Total synthesis of the cyclic monoterpenoid pyrano[3,2- <i>a</i>)carbazole alkaloids derived from 2-hydroxy-6-methylcarbazole. Organic and Biomolecular Chemistry, 2014, 12, 6490-6499.	2.8	44
68	Pseudilins: Halogenated, Allosteric Inhibitors of the Nonâ∈Mevalonate Pathway Enzyme IspD. Angewandte Chemie - International Edition, 2014, 53, 2235-2239.	13.8	53
69	Palladium(II)â€Catalyzed Synthesis of the Formylcarbazole Alkaloids Murrayaline A–C, 7â€Methoxymukonal, and 7â€Methoxyâ€ <i>O</i> â€methylmukonal. European Journal of Organic Chemistry, 2014, 2014, 4014-4028.	2.4	27
70	Silver(I)â€Catalyzed Route to Pyrroles: Synthesis of Halogenated Pseudilins as Allosteric Inhibitors for Myosin ATPase and Xâ€ray Crystal Structures of the Proteinâ€"Inhibitor Complexes. European Journal of Organic Chemistry, 2014, 2014, 4487-4505.	2.4	18
71	Total Synthesis of 7―and 8â€Oxygenated Pyrano[3,2â€ <i>a</i>]carbazole and Pyrano[2,3â€ <i>a</i>]carbazole Alkaloids via Boronic Acid atalyzed Annulation of the Pyran Ring. Chemistry - A European Journal, 2014, 20, 8536-8540.		51
72	Palladium(<scp>ii</scp>)-catalysed total synthesis of naturally occurring pyrano[3,2- <i>a</i> carbazole alkaloids. Organic and Biomolecular Chemistry, 2014, 12, 3866-3876.	2.8	62

#	Article	IF	Citations
73	First total syntheses of chrestifoline-B and $(\hat{A}\pm)$ -chrestifoline-C, and improved synthetic routes to bismurrayafoline-A, bismurrayafolinol and chrestifoline-D. Organic and Biomolecular Chemistry, 2014, 12, 3831-3835.	2.8	19
74	Regioselective prenylation of bromocarbazoles by palladium(0)-catalysed cross coupling $\hat{a} \in \hat{u}$ synthesis of O-methylsiamenol, O-methylmicromeline and carquinostatin A. Organic and Biomolecular Chemistry, 2014, 12, 872-875.	2.8	17
75	A wax ester promotes collective host finding in the nematode Pristionchus pacificus. Nature Chemical Biology, 2014, 10, 281-285.	8.0	23
76	Synthesis of 2â€Hydroxyâ€7â€methylcarbazole, Glycozolicine, Mukoline, Mukolidine, Sansoakamine, Clausineâ€H, and Clausineâ€K and Structural Revision of Clausineâ€TY. European Journal of Organic Chemistry, 2014, 2014, 4741-4752.	2.4	30
77	Synthesis of Prenyl―and Geranyl‧ubstituted Carbazole Alkaloids by DIBALâ€H Promoted Reductive Pyran Ring Opening of Dialkylpyrano[3,2â€ <i>a</i>]carbazoles. Chemistry - A European Journal, 2014, 20, 9504-9509.	3.3	57
78	Concentrations of halogenated natural products versus PCB 153 in bivalves from the North and Baltic Seas. Science of the Total Environment, 2014, 490, 994-1001.	8.0	16
79	Evaluation of steroidal amines as lipid raft modulators and potential anti-influenza agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5165-5169.	2.2	9
80	Synthesis and biological activity of (24E)- and (24Z)-26-hydroxydesmosterol. Bioorganic and Medicinal Chemistry, 2013, 21, 5794-5798.	3.0	3
81	Analysis of Amino-Terminal Variants of Amyloid- \hat{l}^2 Peptides by Capillary Isoelectric Focusing Immunoassay. Analytical Chemistry, 2013, 85, 8142-8149.	6.5	34
82	Total Synthesis of the Biscarbazole Alkaloids Murrafolineâ€A–D by a Domino Sonogashira Coupling/Claisen Rearrangement/Electrocyclization Reaction. Angewandte Chemie - International Edition, 2013, 52, 11073-11077.	13.8	102
83	Efficient Construction of Pyrano[3,2â€ <i>a</i>]carbazoles: Application to a Biomimetic Total Synthesis of Cyclized Monoterpenoid Pyrano[3,2â€ <i>a</i>]carbazole Alkaloids. Chemistry - A European Journal, 2013, 19, 14098-14111.	3.3	105
84	Transition metals in organic synthesis. Part 108: first total synthesis of ekeberginine. Tetrahedron Letters, 2013, 54, 591-593.	1.4	13
85	Ironâ€Mediated Total Synthesis of 2,7â€Dioxygenated Carbazole Alkaloids. European Journal of Organic Chemistry, 2013, 2013, 59-64.	2.4	21
86	Discovery and widespread occurrence of polyhalogenated 1,1'-dimethyl-2,2'-bipyrroles (PDBPs) in marine biota. Environmental Pollution, 2013, 178, 329-335.	7.5	20
87	Inhibitory effect of oxygenated cholestan- $3\hat{l}^2$ -ol derivatives on the growth of Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6111-6113.	2.2	4
88	Myosin 1E localizes to actin polymerization sites in lamellipodia, affecting actin dynamics and adhesion formation. Biology Open, 2013, 2, 1288-1299.	1.2	33
89	Transition Metals in Organic Synthesis, Part 111: First Total Synthesis and Structural Revision of Antipathine A. Synlett, 2013, 24, 2102-2106.	1.8	11
90	Nuclear Hormone Receptor Regulation of MicroRNAs Controls Innate Immune Responses in C. elegans. PLoS Pathogens, 2013, 9, e1003545.	4.7	25

#	Article	IF	Citations
91	Silver(i)-promoted oxidative cyclisation to pyrrolo $[2,1-a]$ is oquinolines and application to the synthesis of $(\hat{A}\pm)$ -crispine A. RSC Advances, 2013, 3, 1089-1096.	3.6	34
92	Transition metals in organic synthesis, Part 105. Synthesis of pyrroles by silver(I)-promoted oxidative cyclization. Arkivoc, 2013, 2013, 6-12.	0.5	1
93	Transition Metals in Organic Synthesis, Part 100: Highly Efficient PallaÂdium(II)-Catalyzed Oxidative Cyclization to the 1,7,8-Trioxygenated Carbazole Alkaloid Murrayastine. Synlett, 2012, 23, 1230-1234.	1.8	11
94	Analysis of bioactive oxysterols in newborn mouse brain by LC/MS. Journal of Lipid Research, 2012, 53, 2469-2483.	4.2	46
95	TRANSITION METALS IN ORGANIC SYNTHESIS, PART 104. IRON-MEDIATED TOTAL SYNTHESIS OF FUROCLAUSINE-A. Heterocycles, 2012, 86, 357.	0.7	12
96	Optimisation of BACE1 inhibition of tripartite structures by modification of membrane anchors, spacers and pharmacophores – development of potential agents for the treatment of Alzheimer's disease. Organic and Biomolecular Chemistry, 2012, 10, 8216.	2.8	18
97	First total synthesis of the biscarbazole alkaloid oxydimurrayafoline. Organic and Biomolecular Chemistry, 2012, 10, 5189.	2.8	25
98	Novel approach to biscarbazole alkaloids via Ullmann coupling $\hat{a} \in \text{``synthesis'}$ synthesis of murrastifoline-A and bismurrayafoline-A. Organic and Biomolecular Chemistry, 2012, 10, 7269.	2.8	50
99	Stereoselective synthesis and hormonal activity of novel dafachronic acids and naturally occurring steroids isolated from corals. Organic and Biomolecular Chemistry, 2012, 10, 4159.	2.8	18
100	Transition metals in organic synthesis. Part 101: Convergent total synthesis of 1,6-dioxygenated carbazole alkaloids. Tetrahedron, 2012, 68, 6727-6736.	1.9	30
101	Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chemical Reviews, 2012, 112, 3193-3328.	47.7	1,043
102	Snapshot of the Palladium(II)â€Catalyzed Oxidative Biaryl Bond Formation by Xâ€ray Analysis of the Intermediate Diaryl Palladium(II) Complex. Chemistry - A European Journal, 2012, 18, 770-776.	3.3	97
103	Transition metals in organic synthesis, Part 98. Transition metal mediated total synthesis of the potent neuronal cell protecting alkaloid (±)-lavanduquinocin. Arkivoc, 2012, 2012, 330-342.	0.5	8
104	Inhibition of Myosin ATPase Activity by Halogenated Pseudilins: A Structure–Activity Study. Journal of Medicinal Chemistry, 2011, 54, 3675-3685.	6.4	39
105	The Pyrrolo[2,1-a]isoquinoline Alkaloids. The Alkaloids Chemistry and Biology, 2011, 70, 79-151.	2.0	29
106	Efficient iron-mediated approach to pyrano[3,2-a]carbazole alkaloidsâ€"first total syntheses of O-methylmurrayamine A and 7-methoxymurrayacine, first asymmetric synthesis and assignment of the absolute configuration of (â^)-trans-dihydroxygirinimbine. Organic and Biomolecular Chemistry, 2011, 9, 2057.	2.8	77
107	Synthesis of Pyrrole and Carbazole Alkaloids. Topics in Current Chemistry, 2011, 309, 203-253.	4.0	195
108	Spectroscopy of Dibenzorubicene: Experimental Data for a Search in Interstellar Spectra. ChemPhysChem, 2011, 12, 2131-2137.	2.1	6

#	Article	IF	Citations
109	Mechanism and Specificity of Pentachloropseudilin-mediated Inhibition of Myosin Motor Activity. Journal of Biological Chemistry, 2011, 286, 29700-29708.	3.4	56
110	Transition Metals in Organic Synthesis, Part $96.\hat{A}^1$ First Total Synthesis of Streptoverticillin: Unambiguous Confirmation of the Absolute Configuration. Synlett, 2011, 2011, 2663-2666.	1.8	2
111	Transition Metals in Organic Synthesis, Part 95: \hat{A}^1 First Total Synthesis of the 1,7-Dioxygenated Carbazole Alkaloids Clausine Q and Clausine R. Synlett, 2011, 2011, 2056-2058.	1.8	2
112	Transition Metals in Organic Synthesis, Part 97: \hat{A}^1 Silver-Catalyzed Synthesis of Hexahalogenated 2,2 \hat{a} €2-Bipyrroles. Synlett, 2011, 2011, 2795-2798.	1.8	5
113	Synthesis of Ten Members of the Maradolipid Family; Novel Diacyltrehalose Glycolipids from Caenorhabditis elegans. Synlett, 2011, 2011, 2482-2486.	1.8	1
114	DAF-12 Regulates a Connected Network of Genes to Ensure Robust Developmental Decisions. PLoS Genetics, 2011, 7, e1002179.	3.5	57
115	Structural Design, Solidâ€Phase Synthesis and Activity of Membraneâ€Anchored βâ€Secretase Inhibitors on Aβ Generation from Wildâ€Type and Swedishâ€Mutant APP. Chemistry - A European Journal, 2010, 16, 14412-14423.	3.3	28
116	Maradolipids: Diacyltrehalose Glycolipids Specific to Dauer Larva in <i>Caenorhabditis elegans</i> Angewandte Chemie - International Edition, 2010, 49, 9430-9435.	13.8	47
117	Subcellular targeting strategies for drug design and delivery. Nature Reviews Drug Discovery, 2010, 9, 29-42.	46.4	612
118	Total synthesis of biologically active alkaloids using transition metals. Pure and Applied Chemistry, 2010, 82, 1975-1991.	1.9	32
119	Cycloadditions of Allylsilanes - Part 22. \hat{A}^1 Stereoselective Synthesis of Cyclopentanes and Cyclobutanes by Lewis Acid Promoted [3+2] and [2+2] Cycloadditions of Allylsilanes. Synlett, 2010, 2010, 2207-2239.	1.8	6
120	Determination of 4-nonylphenol in water samples using 4-(2,6-dimethylhept-3-yl)phenol as new internal standard. Journal of Chromatography A, 2010, 1217, 2950-2955.	3.7	17
121	Organosilicon-mediated total synthesis of the triquinane sesquiterpenes $(\hat{A}\pm)$ - \hat{l}^2 -isocomene and $(\hat{A}\pm)$ -isocomene. Organic and Biomolecular Chemistry, 2010, 8, 4562.	2.8	13
122	Steroid hormones controlling the life cycle of the nematode Caenorhabditis elegans: stereoselective synthesis and biology. Organic and Biomolecular Chemistry, 2010, 8, 739-750.	2.8	24
123	4α-Bromo-5α-cholestan-3β-ol and nor-5α-cholestan-3β-ol derivatives—stereoselective synthesis and hormonal activity in Caenorhabditis elegans. Organic and Biomolecular Chemistry, 2009, 7, 2303.	2.8	6
124	Improved Synthesis of an Ascaroside Pheromone Controlling Dauer Larva Development in Caenorhabditis elegans. Synthesis, 2009, 2009, 3488-3492.	2.3	2
125	Transition Metals in Organic Synthesis, Part $91:\hat{A}^1$ Palladium-Catalyzed Approach to 2,6-Dioxygenated Carbazole Alkaloids - First Total Synthesis of the Phytoalexin Carbalexin C. Synlett, 2009, 2009, 2421-2424.	1.8	12
126	Synthesis and Hormonal Activity of the (25 <i>S</i>)â€Cholestenâ€26â€oic Acids â€" Potent Ligands for the DAFâ€12 Receptor in <i>Caenorhabditis elegans</i> . European Journal of Organic Chemistry, 2009, 2009, 3703-3714.	2.4	18

#	Article	IF	CITATIONS
127	Total Synthesis of Pentabromo―and Pentachloropseudilin, and Synthetic Analogues—Allosteric Inhibitors of Myosin ATPase. Angewandte Chemie - International Edition, 2009, 48, 8042-8046.	13.8	78
128	The mechanism of pentabromopseudilin inhibition of myosin motor activity. Nature Structural and Molecular Biology, 2009, 16, 80-88.	8.2	69
129	Cycloaddition of allylsilanes. Part 20: Organosilicon-mediated total synthesis of $(\hat{A}\pm)$ -cameroonanol. Tetrahedron, 2009, 65, 5484-5490.	1.9	11
130	Methylation of the Sterol Nucleus by STRM-1 Regulates Dauer Larva Formation in Caenorhabditis elegans. Developmental Cell, 2009, 16, 833-843.	7.0	48
131	Synthesis and biological activity of the (25R)-cholesten-26-oic acids—ligands for the hormonal receptor DAF-12 in Caenorhabditis elegans. Organic and Biomolecular Chemistry, 2009, 7, 909.	2.8	30
132	First total synthesis of the whole series of the antiostatins A and B. Chemical Communications, 2009, , 1467 .	4.1	73
133	Synthesis of Biologically Active Carbazole Alkaloids Using Selective Transition-metal-catalyzed Coupling Reactions. Chemistry Letters, 2009, 38, 8-13.	1.3	189
134	Transition metals in organic synthesis - Part 83#: Synthesis and pharmacological potential of carbazoles. Medicinal Chemistry Research, 2008, 17, 374-385.	2.4	89
135	IR, Raman, and UV/Vis Spectra of Corannulene for Use in Possible Interstellar Identification. ChemPhysChem, 2008, 9, 2085-2091.	2.1	33
136	First total synthesis of clausine L and pityriazole, a metabolite of the human pathogenic yeast Malassezia furfur. Organic and Biomolecular Chemistry, 2008, 6, 2481.	2.8	83
137	Palladium-catalyzed total synthesis of euchrestifoline using a one-pot Wacker oxidation and double aromatic C–H bond activation. Organic and Biomolecular Chemistry, 2008, 6, 3902.	2.8	80
138	Chemistry of Carbazole Alkaloids. The Alkaloids Chemistry and Biology, 2008, , 195-383.	2.0	5
139	Introduction. The Alkaloids Chemistry and Biology, 2008, 65, 1.	2.0	48
140	Stereoselective Synthesis of (25R)-Dafachronic Acids and (25R)-Cholestenoic Acid as Potential Ligands for the DAF-12 Receptor in Caenorhabditis elegans. Synlett, 2008, 2008, 1965-1968.	1.8	0
141	Efficient Inhibition of the Alzheimer's Disease Î ² -Secretase by Membrane Targeting. Science, 2008, 320, 520-523.	12.6	254
142	Biological and Pharmacological Activities of Carbazole Alkaloids. The Alkaloids Chemistry and Biology, 2008, 65, 181-193.	2.0	17
143	Stereoselective synthesis of the hormonally active (25S)-Î"7-dafachronic acid, (25S)-Î"4-dafachronic acid, (25S)-dafachronic acid, and (25S)-cholestenoic acid. Organic and Biomolecular Chemistry, 2008, 6, 4293.	2.8	34
144	Membrane Domain-Disrupting Effects of 4-Substitued Cholesterol Derivatives. Langmuir, 2008, 24, 8807-8812.	3.5	11

#	Article	IF	Citations
145	Biogenesis of Carbazole Alkaloids. The Alkaloids Chemistry and Biology, 2008, 65, 159-180.	2.0	1
146	Occurrence, Isolation, and Structure Elucidation. The Alkaloids Chemistry and Biology, 2008, 65, 3-158.	2.0	1
147	Transition Metals in Organic Synthesis, Part 87: An Efficient Palladium-ÂCatalyzed Route to 2-Oxygenated and 2,7-Dioxygenated Carbazole Alkaloids - Total Synthesis of 2-Methoxy-3-methylcarbazole, Glycosinine, Clausine L, Mukonidine, and Clausine V. Synlett, 2008, 2008, 1870-1876.	1.8	9
148	Transition Metals in Organic Synthesis, Part 85. A General Approach to 1,6-Dioxygenated Carbazole Alkaloids - First Total Synthesis of Clausine G, Clausine I, and Clausine Z. Synlett, 2008, 2008, 1698-1702.	1.8	6
149	Stereoselective Total Synthesis of the Sesquiterpene ($\hat{A}\pm$)- \hat{l}^2 -Isocomene. Synlett, 2007, 2007, 2371-2374.	1.8	O
150	Stereoselective Total Synthesis of the Sesquiterpene (±)-Cameroonanol. Synlett, 2007, 2007, 1549-1552.	1.8	2
151	Transition Metals in Organic Synthesis, Part 82. First Total Synthesis of Methyl 6-Methoxycarbazole-3-carboxylate, Glycomaurrol, the Anti-TB Active Micromeline, and the Furo[2,3-c]carbazole Alkaloid Eustifoline-D. Synlett, 2007, 2007, 0268-0272.	1.8	14
152	Synthetic Approach towards the Sex Pheromone of the Female Oleander Scale <i>Aspidiotus Nerii</i> Chemistry Letters, 2007, 36, 1478-1479.	1.3	4
153	Transition Metals in Organic Synthesis, Part 84. Application of Iron- and Nickel-Mediated Coupling Reactions to the Total Synthesis of the Neuronal Cell Protecting Substance (±)-Carquinostatin A. Heterocycles, 2007, 74, 895.	0.7	21
154	First enantioselective total synthesis of neocarazostatin B, determination of its absolute configuration and transformation into carquinostatin A. Chemical Communications, 2006, , 711.	4.1	68
155	First total synthesis of the 7-oxygenated carbazole alkaloids clauszoline-K, 3-formyl-7-hydroxycarbazole, clausine M, clausine N and the anti-HIV active siamenol using a highly efficient palladium-catalyzed approach. Organic and Biomolecular Chemistry, 2006, 4, 3215-3219.	2.8	122
156	First total synthesis of $(\hat{A}\pm)$ -epocarbazolin A and epocarbazolin B, and asymmetric synthesis of (\hat{a}^{*}) -epocarbazolin A via Shi epoxidation. Tetrahedron Letters, 2006, 47, 6079-6082.	1.4	19
157	Regio- and Stereospecific Synthesis of Cholesterol Derivatives and Their Hormonal Activity inCaenorhabditis elegans. European Journal of Organic Chemistry, 2006, 2006, 3687-3706.	2.4	24
158	Synthesis and Activity of Carbazole Derivatives AgainstMycobacterium tuberculosis. ChemMedChem, 2006, 1, 812-815.	3.2	108
159	First Total Synthesis and Assignment of the Absolute Configuration of the Neuronal Cell Protecting Alkaloid Carbazomadurin B. Synlett, 2006, 2006, 0651-0653.	1.8	4
160	Total synthesis of the antitumor active pyrrolo [2,1-a] isoquinoline alkaloid ($\hat{A}\pm$)-crispine A. Tetrahedron Letters, 2005, 46, 1173-1175.	1.4	119
161	Editorial [Hot Topic: Recent Progress in Alkaloid Chemistry (Guest Editor: Hans-Joachim Knolker)]. Current Organic Chemistry, 2005, 9, 1429-1429.	1.6	O
162	Novel Routes to Pyrroles, Indoles and Carbazoles - Applications in Natural Product Synthesis. Current Organic Chemistry, 2005, 9, 1601-1614.	1.6	194

#	Article	IF	Citations
163	First total synthesis of the biologically active 2,7-dioxygenated tricyclic carbazole alkaloids 7-methoxy-O-methylmukonal, clausine H (clauszoline-C), clausine K (clauszoline-J) and clausine O. Organic and Biomolecular Chemistry, 2005, 3, 3099.	2.8	61
164	Novel Three-Step Synthesis of (±)-Harmicine. Synlett, 2004, 2004, 1767-1768.	1.8	40
165	Transition Metal Complexes in Organic Synthesis, Part 74: Total Synthesis of the Marine Alkaloid 6-Chlorohyellazole. Synlett, 2004, 2004, 2705-2708.	1.8	36
166	Transition Metal Complexes in Organic Synthesis, Part 71:First Total Synthesis of Furoclausine-A. Synlett, 2004, 2004, 528-530.	1.8	33
167	Transition Metal Complexes in Organic Synthesis, Part 72:Iron-Mediated Diastereoselective Spiroannelation of Dimethyl Aminomalonate to the 2-Azaspiro[4.5]decane Ring System. Synlett, 2004, 2004, 1769-1771.	1.8	10
168	Sterol-Derived Hormone(s) Controls Entry into Diapause in Caenorhabditis elegans by Consecutive Activation of DAF-12 and DAF-16. PLoS Biology, 2004, 2, e280.	5.6	142
169	A novel pyrrole synthesis. Organic and Biomolecular Chemistry, 2004, 2, 3060-3062.	2.8	82
170	Transition Metal Complexes in Organic Synthesis, Part 70&#. Synthesis of Biologically Active Carbazole Alkaloids Using Organometallic Chemistry. Current Organic Synthesis, 2004, 1, 309-331.</td><td>1.3</td><td>129</td></tr><tr><td>171</td><td>Transition Metal Complexes in Organic Synthesis, Part 73. Synthetic Routes to Naturally Occurring Furocarbazoles. Heterocycles, 2004, 63, 2393.</td><td>0.7</td><td>58</td></tr><tr><td>172</td><td>Iron-Mediated Synthesis of Carbazomycin G and Carbazomycin H, the First Carbazole-1,4-quinol Alkaloids from Streptoverticillium ehimense. European Journal of Organic Chemistry, 2003, 2003, 740-746.</td><td>2.4</td><td>64</td></tr><tr><td>173</td><td>Transition metal complexes in organic synthesis. Part 68: Iron-mediated total synthesis of mukonine and mukonidine by oxidative cyclization with air as the oxidizing agent. Tetrahedron, 2003, 59, 5317-5322.</td><td>1.9</td><td>58</td></tr><tr><td>174</td><td>Indoloquinones, Part 8. Palladium(II)-catalyzed Total Synthesis of Murrayaquinone A, Koeniginequinone A, and Koeniginequinone B. Heterocycles, 2003, 60, 1049.</td><td>0.7</td><td>64</td></tr><tr><td>175</td><td>First total synthesis of the neuronal cell protecting carbazole alkaloid carbazomadurin A by sequential transition metal-catalyzed reactions. Chemical Communications, 2003, , 1170-1171.</td><td>4.1</td><td>69</td></tr><tr><td>176</td><td>Transition Metal Complexes in Organic Synthesis, Part 69.Total Synthesis of the Amaryllidaceae Alkaloids Anhydrolycorinone and Hippadine Using Iron- and Palladium-Mediated Coupling Reactions. Synlett, 2003, 2003, 1752-1754.</td><td>1.8</td><td>23</td></tr><tr><td>177</td><td>Indoloquinones, Part 7. Total Synthesis of the Potent Lipid Peroxidation Inhibitor Carbazoquinocin C by an Intramolecular Palladium-Catalyzed Oxidative Coupling of an Anilino-1,4-benzoquinone. Synthesis, 2002, 2002, 557-564.</td><td>2.3</td><td>73</td></tr><tr><td>178</td><td>Isolation and Synthesis of Biologically Active Carbazole Alkaloids. Chemical Reviews, 2002, 102, 4303-4428.</td><td>47.7</td><td>1,263</td></tr><tr><td>179</td><td>Transition metal complexes in organic synthesis. Part 65: Iron-mediated synthesis of carazostatin, a free radical scavenger from Streptomyces chromofuscus, and O-methylcarazostatin. Tetrahedron, 2002, 58, 8937-8945.</td><td>1.9</td><td>39</td></tr><tr><td>180</td><td>Recent applications of tricarbonyliron-diene complexes to organic synthesis. Pure and Applied Chemistry, 2001, 73, 1075-1086.</td><td>1.9</td><td>49</td></tr></tbody></table>		

#	Article	IF	Citations
181	Transition metal complexes in organic synthesis, part 59.1 First enantioselective total synthesis of lavanduquinocin, a potent neuronal cell protecting substance from Streptomyces viridochromogenes., 2000, 12, 526-528.		16
182	Transition Metal Complexes in Organic Synthesis. Part 61: Convergent Synthesis of Indolo[2,3-b]carbazole by an Iron-Mediated Bidirectional Annulation of Two Indole Rings. Tetrahedron, 2000, 56, 4733-4737.	1.9	21
183	Transition Metal Complexes in Organic Synthesis. Part 57: Synthesis of 1-Azabuta-1,3-dienes and Application to Catalytic Complexation of Buta-1,3-dienes and Cycloalkadienes by the Tricarbonyliron Fragment. Tetrahedron, 2000, 56, 2259-2271.	1.9	37
184	Transition metal complexes in organic synthesis. Part 62: Total synthesis of $(\hat{A}\pm)$ -demethoxycarbonyldihydrogambirtannine and norketoyobyrine by an iron-mediated [2+2+1] cycloaddition. Tetrahedron Letters, 2000, 41, 5035-5038.	1.4	23
185	Transition metal complexes in organic synthesis. Part 58: First enantioselective total synthesis of the potent neuronal cell protecting substance carquinostatin A from (R)-propene oxide. Tetrahedron Letters, 2000, 41, 1171-1174.	1.4	58
186	Transition Metal Complexes in Organic Synthesis, Part 63; Convergent Iron-Mediated Syntheses of the Furo[3,2-a]carbazole Alkaloid Furostifoline. Synthesis, 2000, 2000, 2131-2136.	2.3	27
187	Efficient Synthesis of Tricarbonylironâ [^] Diene Complexes Development of an Asymmetric Catalytic Complexation. Chemical Reviews, 2000, 100, 2941-2962.	47.7	104
188	Cycloadditions of Allylsilanes, Part 12. Regio- and Stereoselective Transformations of Silylbicyclo[n.3.0]alkanes. Synthesis, 1999, 1999, 145-151.	2.3	10
189	Transition Metal Complexes in Organic Synthesis, Part 49. Development of Novel Chiral Catalysts for the Asymmetric Catalytic Complexation of Prochiral Cyclohexa-1,3-dienes by the Tricarbonyliron Fragment - Mechanism of the Asymmetric Catalysis and Involvement of a Dinuclear Iron Cluster. Synlett, 1999, 1999, 421-425.	1.8	10
190	Indoloquinones, Part 6. First Palladium-Mediated Oxidative Cyclization of Arylamino-1,2-benzoquinones to Carbazole-3,4-quinones - Application to the Total Synthesis of Carbazoquinocin C and $(\hat{A}\pm)$ -Carquinostatin A. Synlett, 1999, 1999, 596-598.	1.8	30
191	Transition metal complexes in organic synthesis, part 50. Asymmetric catalytic complexation of 1-methoxycyclohexa-1,3-diene by the tricarbonyliron fragment using amino acid-derived 1-azabuta-1,3-dienes. Tetrahedron Letters, 1999, 40, 3547-3548.	1.4	13
192	Cycloadditions of allylsilanes, part 14. Enantiospecific synthesis of bicyclo [4.3.0] nonanes by asymmetric [3+2] cycloaddition of chiral allylsilanes. Tetrahedron Letters, 1999, 40, 3557-3560.	1.4	13
193	Transition metal complexes in organic synthesis, part 54. Improved total syntheses of the antibiotic alkaloids carbazomycin A and B. Tetrahedron Letters, 1999, 40, 6915-6918.	1.4	38
194	Transition metal complexes in organic synthesis, part 55. Synthesis of corannulene via an iron-mediated [2+2+1] cycloaddition. Tetrahedron Letters, 1999, 40, 8075-8078.	1.4	43
195	Transition metal complexes in organic synthesis, part 53. Iron-mediated synthesis of hyellazole and isohyellazole. Tetrahedron, 1999, 55, 10391-10412.	1.9	45
196	A Novel Method for the Demetalation of Tricarbonyliron-Diene Complexes by a Photolytically Induced Ligand Exchange Reaction with Acetonitrile. Angewandte Chemie - International Edition, 1999, 38, 702-705.	13.8	74
197	Demetalation of Tricarbonyl(cyclopentadienone)iron Complexes Initiated by a Ligand Exchange Reaction with NaOH—X-Ray Analysis of a Complex with Nearly Square-Planar Coordinated Sodium. Angewandte Chemie - International Edition, 1999, 38, 2064-2066.	13.8	216
198	An Unprecedented Domino Double Allylsilane [3+2] Cycloaddition/Wagner-Meerwein Rearrangement/Friedel-Crafts Alkylation/Elimination Reaction Sequence Leading to a Novel Pentacyclic Ring System. Angewandte Chemie - International Edition, 1999, 38, 2583-2585.	13.8	23

#	Article	IF	CITATIONS
199	Transition metal complexes in organic synthesis. Part 47.1 Organic synthesis via tricarbonyl (η4-diene) iron complexes. Chemical Society Reviews, 1999, 28, 151-157.	38.1	157
200	Stereoselective total synthesis of (±)-fragranol by TiCl4 promoted [2+2] cycloaddition of allyl-tert-butyldiphenylsilane and methyl methacrylateâ€. Chemical Communications, 1999, , 1737-1738.	4.1	32
201	Photolytic induction of the asymmetric catalytic complexation of prochiral cyclohexa-1,3-dienes by the tricarbonyliron fragment1. Chemical Communications, 1999, , 831-832.	4.1	10
202	Transition metal complexes in organic synthesis, part 43. First total synthesis of the free radical scavenger $(\hat{A}\pm)$ -neocarazostatin B via iron- and nickel-mediated coupling reactions. Tetrahedron Letters, 1998, 39, 2947-2950.	1.4	34
203	Cycloadditions of allylsilanes, part 13. Lewis acid-promoted stereospecific [2+2] cycloaddition of crotylsilanes and methyl propynoate. Tetrahedron Letters, 1998, 39, 7705-7708.	1.4	27
204	Synthesis, Molecular Structure, Fluxional Behavior, and Tricarbonyliron Transfer Reactions of (i-4-1-Azabuta-1,3-diene)tricarbonyliron Complexes. European Journal of Inorganic Chemistry, 1998, 1998, 993-1007.	2.0	37
205	Transition metal complexes in organic synthesis, part 42. First total synthesis of the potent neuronal cell protecting substance ($\hat{A}\pm$)-lavanduquinocin via iron- and nickel-mediated coupling reactions. Tetrahedron Letters, 1998, 39, 2537-2540.	1.4	35
206	Transition metal complexes in organic synthesis-44. Iron-mediated synthesis of indolo[2,3-b]carbazole. Tetrahedron Letters, 1998, 39, 4007-4008.	1.4	19
207	Indoloquinones, part 5. Palladium-catalyzed total synthesis of the potent lipid peroxidation inhibitor carbazoquinocin C. Tetrahedron Letters, 1998, 39, 8267-8270.	1.4	71
208	Isocyanates, part 5 Synthesis of chiral oxazolidin-2-ones and imidazolidin-2-ones via DMAP-catalyzed isocyanation of amines with di-tert-butyl dicarbonate. Tetrahedron Letters, 1998, 39, 9407-9410.	1.4	49
209	Transition metal complexes in organic synthesis. Part 46. Synthesis of 5-arylmethyl-substituted tricarbonyl(1-4-?-cyclohexa-1,3-diene)iron complexes. Journal FÃ $\frac{1}{4}$ r Praktische Chemie, Chemiker-Zeitung, 1998, 340, 530-535.	0.5	7
210	Palladium-catalyzed total synthesis of the antibiotic carbazole alkaloids carbazomycin G and H 1. Journal of the Chemical Society Perkin Transactions 1, 1998, , 173-176.	0.9	74
211	1,4-Diaryl-1-azabuta-1,3-diene-Catalyzed Complexation of Cyclohexa-1,3-diene by the Tricarbonyliron Fragment: Development of Highly Efficient Catalysts, Optimization of Reaction Conditions, and Proposed Mechanismâ€. Organometallics, 1998, 17, 3916-3925.	2.3	43
212	Cycloadditions of Allylsilanes, Part 11. Stereoselective Synthesis of Hydroxycyclopentanes and Hydroxymethylcyclobutanes by Titanium Tetrachloride-Promoted [3+2] and [2+2] Cycloadditions of Sterically Hindered Allylsilanes and Subsequent Oxidative Cleavage of the Carbon-Silicon Bond. Synlett, 1998, 1998, 613-616.	1.8	34
213	Transition Metal Complexes in Organic Synthesis, Part 39. First Total Synthesis of the Potent Neuronal Cell Protecting Substance (±)-Carquinostatin A via Iron- and Nickel-Mediated Coupling Reactions. Synlett, 1997, 1997, 1108-1110.	1.8	31
214	First total synthesis of carbazomycin C and D 1. Journal of the Chemical Society Perkin Transactions 1, 1997, , 349-350.	0.9	33
215	Transition Metal Complexes in Organic Synthesis, Part 40.Diastereoselective Synthesis of Substituted Perhydroacenaphthene Derivatives via Intramolecular Diels-Alder Cycloadditions. Tetrahedron Letters, 1997, 38, 8021-8024.	1.4	7
216	Cycloadditions of allylsilances. Part 10. Stereoselective Construction of Ring Systems by Cycloaddition Reactions of allyltriisopropylsilance. Journal Für Praktische Chemie, Chemiker-Zeitung, 1997, 339, 304-314.	0.5	63

#	Article	lF	Citations
217	Enantioselective synthesis of calcitriol a-ring fragments. Tetrahedron, 1997, 53, 91-108.	1.9	11
218	Transition metal complexes in organic synthesis, part 36. Cyclization of tricarbonyliron complexes by oxygen to 4a,9a-dihydro-9H-carbazoles: Application to the synthesis of mukonine, mukonidine, and pyrido[3,2,1-jk]carbazoles. Tetrahedron Letters, 1997, 38, 533-536.	1.4	43
219	Transition metal complexes in organic synthesis, part 37.1 convergent iron-mediated total synthesis of the potent lipid peroxidation inhibitor carbazoquinocin C. Tetrahedron Letters, 1997, 38, 1535-1538.	1.4	50
220	Transition metal complexes in organic synthesis, part 38. First total synthesis of carbazomycin G and H. Tetrahedron Letters, 1997, 38, 4051-4054.	1.4	40
221	Tert-butyl isocyanate, a non-rigid molecule. Journal of Molecular Structure, 1997, 413-414, 211-216.	3.6	5
222	Highly Stereoselective Synthesis of Bicyclo[<i>n</i> .3.0]alkanes by Titanium Tetrachloride Promoted [3 + 2] Cycloaddition of Allylsilanes and 1â€Acetylcycloalkenes. Chemistry - A European Journal, 1997, 3, 538-551.	3.3	41
223	Asymmetric Catalysis in the Complexation of Prochiral Dienes by the Tricarbonyliron Fragment: A Novel Methodology for the Enantioselective Synthesis of Planar Chiral Tricarbonyl(diene)iron Complexes. Angewandte Chemie International Edition in English, 1996, 35, 341-344.	4.4	43
224	Transition metal-diene complexes in organic synthesis, part 27. synthesis and reactivity of 4a,9a-dihydro-9H-carbazoles. Tetrahedron, 1996, 52, 7345-7362.	1.9	27
225	Transition metal-diene complexes in organic synthesis $\hat{a}\in$ 29. Separation of planar chiral tricarbonyliron-diene complexes at cyclodextrin bonded chiral stationary phases by HPLC. Tetrahedron Letters, 1996, 37, 2405-2408.	1.4	15
226	Isocyanates â€" Part 3.7 Synthesis of carbamates by DMAP-catalyzed reaction of amines with di-tert-butyldicarbonate and alcohols. Tetrahedron Letters, 1996, 37, 5861-5864.	1.4	68
227	Transition metal complexes in organic synthesis, part 32. Fluxionality of (Î-4-1-aza-1,3-butadiene)tricarbonyliron complexes. Tetrahedron Letters, 1996, 37, 6543-6546.	1.4	22
228	Transition metal complexes in organic synthesis, part 33. Molybdenum-mediated total synthesis of girinimbine, murrayacine, and dihydroxygirinimbine. Tetrahedron Letters, 1996, 37, 7947-7950.	1.4	41
229	Transition metal complexes in organic synthesis, part 35.1 first total synthesis of furostifoline. Tetrahedron Letters, 1996, 37, 9183-9186.	1.4	40
230	Cycloadditions of Allylsilanes, Part 8.1 Diastereoselective Synthesis of Spirocyclopentanes by Lewis Acid Promoted [3+2] Cycloaddition of Allyltriisopropylsilane and 2-Alkylidenecycloalkan-1-ones. Synlett, 1996, 1996, 1155-1158.	1.8	27
231	Transition Metal Complexes in Organic Synthesis, Part 31.1 A Novel Molybdenum-Mediated Synthesis of Carbazole Derivatives: Application to the Total Synthesis of Mukonal and $1,1\hat{a}\in^{\text{TM}}$ -Bis(2-hydroxy-3-methylcarbazole). Synlett, 1996, 1996, 737-740.	1.8	55
232	A Novel Method for the Synthesis of Isocyanates Under Mild Conditions. Angewandte Chemie International Edition in English, 1995, 34, 2497-2500.	4.4	142
233	Transition Metal-Diene Complexes in Organic Synthesis, Part 25.1 Cycloadditions of Annulated 2,5-Bis(trimethylsilyl)cyclopentadienones. Tetrahedron Letters, 1995, 36, 7647-7650.	1.4	76
234	Cycloadditions of Allylsilanes, Part 7.10 Stereoselective Synthesis of Hydroxycyclopentanes from Silylcyclopentanes by Oxidative Cleavage of the Carbon-Silicon Bond. Synlett, 1995, 1995, 378-382.	1.8	42

#	Article	IF	Citations
235	Transition Metal-Diene Complexes in Organic Synthesis, Part 22.The Iron-Mediated Quinone Imine Cyclization: A General Route to 3-Hydroxycarbazoles. Synthesis, 1995, 1995, 397-408.	2.3	35
236	Total Synthesis of the Marine Alkaloid Hyellazole. Tetrahedron Letters, 1995, 36, 5339-5342.	1.4	37
237	Transition metal-mediated synthesis of carbazole derivatives. Advances in Nitrogen Heterocycles, 1995, , 173-204.	0.2	35
238	Transition Metal-Diene Complexes in Organic Synthesis, Part 20.1Development of Highly Efficient 1-Aza-1,3-butadiene Catalysts for the Complexation of 1,3-Dienes by the Tricarbonyliron Fragment. Synlett, 1994, 1994, 405-408.	1.8	29
239	[3+2] Cycloadditions of Allylsilanes, Part 5.1Synthesis of Bicyclo[3.3.0]octanes by Domino [3+2] Cycloadditions of Allylsilanes and 3-Butyn-2-one. Synlett, 1994, 1994, 131-133.	1.8	21
240	Imidazole derivatives, part IX selective reactions of functionalized imidazo[1,2-a]pyridines: stereospecific synthesis of 5,6-dihydroimidazo[1,2-a]pyridines. Tetrahedron Letters, 1994, 35, 2157-2160.	1.4	17
241	Indoloquinones - 3. Palladium-promoted synthesis of hydroxy-substituted 5-Cyano-5H-benzo[b]carbazole-6, 11-diones. Tetrahedron, 1994, 50, 10893-10908.	1.9	143
242	Lewis Acid Promoted[2+ 2] Cycloaddition of Allylsilanes and Unsaturated Esters: A Novel Method for Cyclobutane Construction. Angewandte Chemie International Edition in English, 1994, 33, 1612-1615.	4.4	43
243	Indoloquinones, Part 2 Palladium-promoted synthesis of a 7-deoxyprekinamycin isomer. Tetrahedron Letters, 1994, 35, 1695-1698.	1.4	45
244	A Versatile and Efficient Synthesis of Annulated Cyclopentanes by Stereoselective [3 + 2] Cycloaddition of Allylsilanes and Cycloalkenyl Methyl Ketones. Angewandte Chemie International Edition in English, 1993, 32, 1081-1083.	4.4	66
245	Eine vielseitige und effiziente Synthese anellierter Cyclopentane durch stereoselektive Cycloaddition von Allylsilanen und Cycloalkenylmethylketonen. Angewandte Chemie, 1993, 105, 1104-1106.	2.0	22
246	Transition Metal-Diene Complexes in Organic Synthesis. Part 15. Iron-mediated total synthesis of carbazomycin A and B. Helvetica Chimica Acta, 1993, 76, 2500-2514.	1.6	68
247	Transition metal-diene complexes in organic synthesis - 13. Highly Chemo- and Stereoselective Oxidations of Tricarbonyliron-Cyclohexadiene Complexes: Synthesis of 4-Deoxycarbazomycin B. Tetrahedron, 1993, 49, 841-862.	1.9	61
248	Transition metal-diene complexes in organic synthesis - 16.1. Tetrahedron, 1993, 49, 11221-11236.	1.9	67
249	[3+2] cydoadditions of allylsilanes, Part 3. diastereoselective construction of two contiguous quaternary carbon centers by [3+2] cycloaddition of allyltrisisopropylsilane. Tetrahedron Letters, 1993, 34, 4765-4768.	1.4	30
250	[3+2] cycloadditions of allylsilanes - 4 Tetrahedron, 1993, 49, 9955-9972.	1.9	35
251	Transition Metal-Diene Complexes in Organic Synthesis, Part 18.1Iron-Mediated [2+2+1] Cycloadditions of Diynes and Carbon Monoxide: Selective Demetalation Reactions. Synlett, 1993, 1993, 924-926.	1.8	107
252	Transition Metal-Diene Complexes in Organic Synthesis, Part 14.1Regioselective Iron-Mediated [2+2+1] Cycloadditions of Alkynes and Carbon Monoxide: Synthesis of Substituted Cyclopentadienones. Synlett, 1992, 1992, 1002-1004.	1.8	123

#	Article	IF	CITATIONS
253	Transition Metal-Diene Complexes in Organic Synthesis; Part 11.1Tricarbonyl (η4-1-aza-1,3-butadiene) iron Complexes as Iron Tricarbonyl Transfer Reagents: 1-Aza-1,3-butadiene-Catalyzed Transfer of the Iron Tricarbonyl Fragment and Complexation of 1,3-Dienes by Polymer-Supported Iron Tricarbonyl. Synlett, 1992, 1992, 517-520.	1.8	43
254	Iron-Mediated Synthesis of Heterocyclic Ring Systems and Applications in Alkaloid Chemistry. Synlett, 1992, 1992, 371-387.	1.8	123
255	Imidazole Derivatives, VII. Reaction of 1â€Acylimidazoles with Dialkyl Acetylenedicarboxylates: Synthesis of Imidazo[1,2â€ <i>a</i>)pyridines, (2â€Imidazolyl)maleates, 1,5â€Dihydroimidazo[1,2â€ <i>a</i>)pyridines, Furo[2′,3′: 2,3]pyrrolo[1,2â€ <i>a</i>)imidazoles, Furo[2′,3′: 2,3]pyrrolo[1,2â€ <i>a</i>)benzimidazoles, Chemische Berichte. 1992. 125. 1939-1951.	les and	19
256	Transition metal-diene complexes in organic synthesis, part 7. Regioselectivity control in iron-mediated diastereoselective spiroannelations of arylamines: Cyclization to 1-aza-versus 3-aza-spiro[5.5]undecanes. Tetrahedron Letters, 1991, 32, 1953-1956.	1.4	23
257	Transition Metal-Diene Complexes in Organic Synthesis; Part 6.1Stereoselective Synthesis of Iron-Complexed 4b,8a-Dihydrocarbazol-3-ones: A Novel Route to 4a,9a-Dihydro-9H-carbazoles and Highly Chemo-, Regio-, and Stereoselective Sakurai Reactions. Synlett, 1991, 1991, 147-150.	1.8	28
258	Enantioselective total synthesis of (+)-tetrahydroalstonine, (+)-acricine, and (+)-reserpinine. Tetrahedron Letters, 1990, 31, 2705-2706.	1.4	12
259	Imidazole Derivatives, III. Regiospecific Synthesis,Structure, and Fluorescence Properties of Highly substituted Imidazo[1,2â€∢i>a⟨ i>]pyridines and Pyrido[1,2â€∢i>a⟨ i>]benzimidazoles. Chemische Berichte, 1990, 123, 327-339.	0.2	63
260	Conjugate Addition of Allylsilanes with Subsequent Sila-Wagner-Meerwein Rearrangement: A Novel Methodology for Stereoselective Trimethylsilylcyclopentane Annulation. Synlett, 1990, 1990, 429-430.	1.8	59
261	Perkin communications. Imidazole derivatives. Part 4. A novel and direct synthesis of 7H-pyrrolo-[1,2-a]imidazoles. Journal of the Chemical Society Perkin Transactions 1, 1990, , 1821-1822.	0.9	11
262	Iron-mediated total synthesis of the cytotoxic carbazole koenoline and related alkaloids. Journal of the Chemical Society Chemical Communications, 1990, , 664-665.	2.0	56
263	Hochselektive Oxidationen von Fe(CO) ₃ â€Cyclohexadienâ€Komplexen: Synthese von 4b,8aâ€Dihydrocarbazolâ€3â€onen und erste Totalsynthese von Carbazomycin A. Angewandte Chemie, 1989, 101, 225-227.	2.0	41
264	Highly Selective Oxidations of Fe(CO)3-Cyclohexadiene Complexes: Synthesis of 4b,8a-Dihydrocarbazol-3-ones and the First Total Synthesis of Carbazomycin A. Angewandte Chemie International Edition in English, 1989, 28, 223-225.	4.4	52
265	Iron-Mediated Diastereoselective Spiroannelation to the Spiro[1,2,3,4-tetrahydroquinoline-4,1′-cyclohexane] System and a Novel Rearrangement to 2,3-Dihydroindole Derivatives. Angewandte Chemie International Edition in English, 1989, 28, 1678-1679.	4.4	27
266	The total synthesis of the carbazole antibiotic carbazomycin B and an improved route to carbazomycin A1b. Journal of the Chemical Society Chemical Communications, 1989, .	2.0	47
267	A novel synthesis of the imidazo[1,2-a]pyridine ring system. Journal of the Chemical Society Chemical Communications, 1988, , 1151-1153.	2.0	17
268	Cobalt-Mediated[2+ 2+ 2]Cycloadditions of Alkynes to the Imidazole 4,5-Double Bond. First Synthesis of the 3a, 7a-Dihydrobenzimidazole Nucleus and Its Preliminary Chemistry Including a Novel Quinoline Construction. Angewandte Chemie International Edition in English, 1987, 26, 1035-1037.	4.4	25
269	Occurrence, Biological Activity, and Convergent Organometallic Synthesis of Carbazole Alkaloids. Topics in Current Chemistry, 0, , 115-148.	4.0	161